Update app.py
Browse files
app.py
CHANGED
|
@@ -1,62 +1,35 @@
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
-
import
|
| 4 |
-
import scipy.sparse.linalg
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
pairs = []
|
| 12 |
-
for n in [-1, 1]:
|
| 13 |
-
if 0 <= i+n <= max_i:
|
| 14 |
-
pairs.append((i+n, j))
|
| 15 |
-
if 0 <= j+n <= max_j:
|
| 16 |
-
pairs.append((i, j+n))
|
| 17 |
-
return pairs
|
| 18 |
-
|
| 19 |
-
def poisson_sharpening(img, alpha):
|
| 20 |
-
img_h, img_w = img.shape[:2]
|
| 21 |
-
img_s = img.copy()
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
b = np.zeros(img_h*img_w*4*2)
|
| 27 |
-
|
| 28 |
-
e = 0
|
| 29 |
-
for y in range(img_h):
|
| 30 |
-
for x in range(img_w):
|
| 31 |
-
A[e, im2var[y][x]] = 1
|
| 32 |
-
b[e] = img_s[y][x]
|
| 33 |
-
e += 1
|
| 34 |
-
|
| 35 |
-
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
| 36 |
-
A[e, im2var[y][x]] = 1
|
| 37 |
-
A[e, im2var[n_y][n_x]] = -1
|
| 38 |
-
|
| 39 |
-
b[e] = alpha * (img_s[y][x] - img_s[n_y][n_x])
|
| 40 |
-
e += 1
|
| 41 |
-
|
| 42 |
-
A = sp.sparse.csr_matrix(A)
|
| 43 |
-
v = sp.sparse.linalg.lsqr(A, b)[0]
|
| 44 |
-
|
| 45 |
-
return np.clip(v.reshape(img_h, img_w), 0, 1)
|
| 46 |
|
| 47 |
def sharpen_image(input_img, alpha):
|
| 48 |
-
img =
|
| 49 |
|
| 50 |
-
sharpen_img = np.
|
| 51 |
for b in range(3):
|
| 52 |
-
sharpen_img[:,:,b] =
|
| 53 |
|
| 54 |
return (sharpen_img * 255).astype(np.uint8)
|
| 55 |
|
| 56 |
-
# Create examples list
|
| 57 |
examples = [
|
| 58 |
-
["img1.jpg",
|
| 59 |
-
["img2.PNG",
|
| 60 |
]
|
| 61 |
|
| 62 |
# Create the Gradio interface
|
|
@@ -64,10 +37,10 @@ iface = gr.Interface(
|
|
| 64 |
fn=sharpen_image,
|
| 65 |
inputs=[
|
| 66 |
gr.Image(label="Input Image", type="numpy"),
|
| 67 |
-
gr.Slider(minimum=1
|
| 68 |
],
|
| 69 |
outputs=gr.Image(label="Sharpened Image"),
|
| 70 |
-
title="Poisson Image Sharpening",
|
| 71 |
description="Upload an image or choose from the examples, then adjust the sharpening strength to enhance edges and details.",
|
| 72 |
theme='bethecloud/storj_theme',
|
| 73 |
examples=examples,
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
+
from numba import jit, prange
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
@jit(nopython=True, parallel=True)
|
| 7 |
+
def fast_poisson_sharpening(img, alpha):
|
| 8 |
+
img_h, img_w = img.shape
|
| 9 |
+
output = np.zeros_like(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
for y in prange(1, img_h - 1):
|
| 12 |
+
for x in range(1, img_w - 1):
|
| 13 |
+
laplacian = (
|
| 14 |
+
img[y-1, x] + img[y+1, x] + img[y, x-1] + img[y, x+1] - 4 * img[y, x]
|
| 15 |
+
)
|
| 16 |
+
output[y, x] = img[y, x] + alpha * laplacian
|
| 17 |
|
| 18 |
+
return np.clip(output, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def sharpen_image(input_img, alpha):
|
| 21 |
+
img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB).astype('float32') / 255.0
|
| 22 |
|
| 23 |
+
sharpen_img = np.zeros_like(img)
|
| 24 |
for b in range(3):
|
| 25 |
+
sharpen_img[:,:,b] = fast_poisson_sharpening(img[:,:,b], alpha)
|
| 26 |
|
| 27 |
return (sharpen_img * 255).astype(np.uint8)
|
| 28 |
|
| 29 |
+
# Create examples list
|
| 30 |
examples = [
|
| 31 |
+
["img1.jpg", 0.5],
|
| 32 |
+
["img2.PNG", 0.3],
|
| 33 |
]
|
| 34 |
|
| 35 |
# Create the Gradio interface
|
|
|
|
| 37 |
fn=sharpen_image,
|
| 38 |
inputs=[
|
| 39 |
gr.Image(label="Input Image", type="numpy"),
|
| 40 |
+
gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.5, label="Sharpening Strength (alpha)")
|
| 41 |
],
|
| 42 |
outputs=gr.Image(label="Sharpened Image"),
|
| 43 |
+
title="Fast Poisson Image Sharpening",
|
| 44 |
description="Upload an image or choose from the examples, then adjust the sharpening strength to enhance edges and details.",
|
| 45 |
theme='bethecloud/storj_theme',
|
| 46 |
examples=examples,
|