Spaces:
Running
Running
import cv2 | |
import numpy as np | |
from numba import jit, prange | |
import gradio as gr | |
def fast_poisson_sharpening(img, alpha): | |
img_h, img_w = img.shape | |
output = np.zeros_like(img) | |
for y in prange(1, img_h - 1): | |
for x in range(1, img_w - 1): | |
laplacian = ( | |
img[y-1, x] + img[y+1, x] + img[y, x-1] + img[y, x+1] - 4 * img[y, x] | |
) | |
output[y, x] = img[y, x] + alpha * laplacian | |
return np.clip(output, 0, 1) | |
def sharpen_image(input_img, alpha): | |
# Convert BGR to RGB | |
img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB).astype('float32') / 255.0 | |
sharpen_img = np.zeros_like(img) | |
for b in range(3): | |
sharpen_img[:,:,b] = fast_poisson_sharpening(img[:,:,b], alpha) | |
# Convert back to BGR for output | |
return cv2.cvtColor((sharpen_img * 255).astype(np.uint8), cv2.COLOR_RGB2BGR) | |
# Create examples list | |
examples = [ | |
["img1.jpg", 0.5], | |
["img2.PNG", 0.3], | |
] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=sharpen_image, | |
inputs=[ | |
gr.Image(label="Input Image", type="numpy"), | |
gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.5, label="Sharpening Strength (alpha)") | |
], | |
outputs=gr.Image(label="Sharpened Image"), | |
title="Fast Poisson Image Sharpening", | |
description="Upload an image or choose from the examples, then adjust the sharpening strength to enhance edges and details.", | |
theme='bethecloud/storj_theme', | |
examples=examples, | |
cache_examples=True | |
) | |
iface.launch() |