import transformers from transformers import GraphormerForGraphClassification from transformers.models.graphormer.collating_graphormer import preprocess_item import gradio as gr import json import torch import os try: import toml except ImportError: os.system('pip install toml') import toml print('todo en orden') model = GraphormerForGraphClassification.from_pretrained("PedroLancharesSanchez/graph-regression") def predict(instancia): with open(instancia, "r") as archivo: datos=json.load(archivo) instancia_preprocesada=preprocess_item(datos) inputs={} inputs['input_nodes'] = torch.tensor([instancia_preprocesada['input_nodes']]) inputs['input_edges'] = torch.tensor([instancia_preprocesada['input_edges']]) inputs['attn_bias'] = torch.tensor([instancia_preprocesada['attn_bias']]) inputs['in_degree'] = torch.tensor([instancia_preprocesada['in_degree']]) inputs['out_degree'] = torch.tensor([instancia_preprocesada['out_degree']]) inputs['spatial_pos'] = torch.tensor([instancia_preprocesada['spatial_pos']]) inputs['attn_edge_type'] = torch.tensor([instancia_preprocesada['attn_edge_type']]) print(inputs) with torch.no_grad(): logits = model(**inputs).logits return str(logits.item()) ejemplos = '''{"node_feat": [[0],[0],[0],[0],[0],[0],[0],[0],[1],[0],[0],[0],[0],[1],[2],[0],[0],[0],[0],[0],[0],[3],[0],[0]], "edge_index": [[0,1,1,1,1,2,3,4,4,4,5,5,6,6,7,7,7,8,8,9,9,10,10,10,11,11,12,12,12,13,14,14,15,15,15,16,16,17,17,18,18,19,19,20,20,20,21,22,22,22,23,23]], "edge_attr": [[1],[1],[1],[1],[1],[1],[1],[1],[2],[1],[2],[1],[1],[2],[2],[1],[1],[1],[1],[1],[2],[2],[1],[1],[1],[1],[1],[2],[1],[2],[1],[1],[1],[2],[1],[2],[1],[1],[2],[2],[1],[1],[2],[1],[2],[1],[1],[1],[1],[2],[1],[2]], "y": [3.1381945610046387], "num_nodes": 24}''' # Crear la interfaz Gradio interfaz = gr.Interface(fn=predict, inputs="file", outputs='text', examples=['grafo1.json','grafo2.json','grafo3.json']) interfaz.launch(share=False)