import transformers from transformers import GraphormerForGraphClassification import gradio as gr import os try: import toml except ImportError: os.system('pip install toml') import toml print('todo en orden') model = GraphormerForGraphClassification.from_pretrained("PedroLancharesSanchez/graph-regression") def predict(instancia): instancia_preprocesada=preprocess_item(instancia) inputs={} inputs['input_nodes'] = torch.tensor([instancia_preprocesada['input_nodes']]) inputs['input_edges'] = torch.tensor([instancia_preprocesada['input_edges']]) inputs['attn_bias'] = torch.tensor([instancia_preprocesada['attn_bias']]) inputs['in_degree'] = torch.tensor([instancia_preprocesada['in_degree']]) inputs['out_degree'] = torch.tensor([instancia_preprocesada['out_degree']]) inputs['spatial_pos'] = torch.tensor([instancia_preprocesada['spatial_pos']]) inputs['attn_edge_type'] = torch.tensor([instancia_preprocesada['attn_edge_type']]) with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() return logits graph_input = gr.inputs.Graph(graph_type="networkx", label="Grafo de entrada") regression_output = gr.outputs.Textbox(label="Valor de regresiĆ³n") gr.Interface(fn=predict, inputs=graph_input, outputs=regression_output,examples=['grafo1.json','grafo2.json']).launch(share=False)