File size: 1,375 Bytes
d34a682 611a628 74a3db1 d34a682 b2c5b3d 611a628 d34a682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import transformers
from transformers import GraphormerForGraphClassification
import gradio as gr
import os
try:
import toml
except ImportError:
os.system('pip install toml')
import toml
print('todo en orden')
model = GraphormerForGraphClassification.from_pretrained("PedroLancharesSanchez/graph-regression")
def predict(instancia):
instancia_preprocesada=preprocess_item(instancia)
inputs={}
inputs['input_nodes'] = torch.tensor([instancia_preprocesada['input_nodes']])
inputs['input_edges'] = torch.tensor([instancia_preprocesada['input_edges']])
inputs['attn_bias'] = torch.tensor([instancia_preprocesada['attn_bias']])
inputs['in_degree'] = torch.tensor([instancia_preprocesada['in_degree']])
inputs['out_degree'] = torch.tensor([instancia_preprocesada['out_degree']])
inputs['spatial_pos'] = torch.tensor([instancia_preprocesada['spatial_pos']])
inputs['attn_edge_type'] = torch.tensor([instancia_preprocesada['attn_edge_type']])
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
return logits
graph_input = gr.inputs.Graph(graph_type="networkx", label="Grafo de entrada")
regression_output = gr.outputs.Textbox(label="Valor de regresión")
gr.Interface(fn=predict, inputs=graph_input, outputs=regression_output,examples=['grafo1.json','grafo2.json']).launch(share=False)
|