Something / app.py
Pclanglais's picture
Update app.py
4405d10 verified
raw
history blame
8.4 kB
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
import torch
import gradio as gr
import json
import os
import shutil
import requests
import pandas as pd
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
editorial_model = "PleIAs/Bibliography-Formatter"
token_classifier = pipeline(
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
css = """
<style>
.manuscript {
display: flex;
margin-bottom: 10px;
align-items: baseline;
}
.annotation {
width: 15%;
padding-right: 20px;
color: grey !important;
font-style: italic;
text-align: right;
}
.content {
width: 80%;
}
h2 {
margin: 0;
font-size: 1.5em;
}
.title-content h2 {
font-weight: bold;
}
.bibliography-content {
color:darkgreen !important;
margin-top: -5px; /* Adjust if needed to align with annotation */
}
.paratext-content {
color:#a4a4a4 !important;
margin-top: -5px; /* Adjust if needed to align with annotation */
}
</style>
"""
# Preprocess the 'word' column
def preprocess_text(text):
# Remove HTML tags
text = re.sub(r'<[^>]+>', '', text)
# Replace newlines with spaces
text = re.sub(r'\n', ' ', text)
# Replace multiple spaces with a single space
text = re.sub(r'\s+', ' ', text)
# Strip leading and trailing whitespace
return text.strip()
def split_text(text, max_tokens=500):
# Split the text by newline characters
parts = text.split("\n")
chunks = []
current_chunk = ""
for part in parts:
# Add part to current chunk
if current_chunk:
temp_chunk = current_chunk + "\n" + part
else:
temp_chunk = part
# Tokenize the temporary chunk
num_tokens = len(tokenizer.tokenize(temp_chunk))
if num_tokens <= max_tokens:
current_chunk = temp_chunk
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = part
if current_chunk:
chunks.append(current_chunk)
# If no newlines were found and still exceeding max_tokens, split further
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
long_text = chunks[0]
chunks = []
while len(tokenizer.tokenize(long_text)) > max_tokens:
split_point = len(long_text) // 2
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
split_point += 1
# Ensure split_point does not go out of range
if split_point >= len(long_text):
split_point = len(long_text) - 1
chunks.append(long_text[:split_point].strip())
long_text = long_text[split_point:].strip()
if long_text:
chunks.append(long_text)
return chunks
def create_bibtex_entry(data):
author = data.get('Author', '').strip()
title = data.get('Title', '').strip()
journal = data.get('Journal', '').strip()
year = data.get('Year', '').strip()
volume = data.get('Volume', '').strip()
pages = data.get('Pages', '').strip()
doi = data.get('Doi', '').strip()
# Remove "doi: " prefix if present
doi = doi.replace('doi: ', '')
bibtex = "@article{idnothing,\n"
if author: bibtex += f" author = {{{author}}},\n"
if title: bibtex += f" title = {{{title}}},\n"
if journal: bibtex += f" journal = {{{journal}}},\n"
if year: bibtex += f" year = {{{year}}},\n"
if volume: bibtex += f" volume = {{{volume}}},\n"
if pages: bibtex += f" pages = {{{pages}}},\n"
if doi: bibtex += f" doi = {{{doi}}},\n"
bibtex += "}"
return bibtex
These changes should result in a more complete and accurate BibTeX entry. The fields will only be included if they have content, and all the information from the input should now be properly captured.
If you're still experiencing issues after making these changes, please provide an example of the input text you're using and the output you're getting. This will help me further diagnose and resolve any remaining problems.
Claude does not have the ability to run the code it generates yet.
Claude can make mistakes. Please double-check responses.
def transform_chunks(marianne_segmentation):
marianne_segmentation = pd.DataFrame(marianne_segmentation)
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('', '\n', regex=False)
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
html_output = []
bibtex_data = {}
current_entity = None
for _, row in marianne_segmentation.iterrows():
entity_group = row['entity_group']
result_entity = "[" + entity_group.capitalize() + "]"
word = row['word']
if entity_group in ['Author', 'Title', 'Journal', 'Pages', 'Doi']:
if entity_group in bibtex_data:
bibtex_data[entity_group] += ' ' + word
else:
bibtex_data[entity_group] = word
current_entity = entity_group
elif entity_group == 'None':
if current_entity:
bibtex_data[current_entity] += ' ' + word
else:
bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
# Extract year from the 'None' field if present
none_content = bibtex_data.get('None', '')
year_match = re.search(r'\((\d{4})\)', none_content)
if year_match:
bibtex_data['Year'] = year_match.group(1)
# Extract volume from the 'None' field if present
volume_match = re.search(r',\s*(\d+),', none_content)
if volume_match:
bibtex_data['Volume'] = volume_match.group(1)
bibtex_entry = create_bibtex_entry(bibtex_data)
final_html = '\n'.join(html_output)
return final_html, bibtex_entry
# Class to encapsulate the Falcon chatbot
class MistralChatBot:
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
self.system_prompt = system_prompt
def predict(self, user_message):
editorial_text = re.sub("\n", " ¶ ", user_message)
num_tokens = len(tokenizer.tokenize(editorial_text))
if num_tokens > 500:
batch_prompts = split_text(editorial_text, max_tokens=500)
else:
batch_prompts = [editorial_text]
out = token_classifier(batch_prompts)
classified_list = []
for classification in out:
df = pd.DataFrame(classification)
classified_list.append(df)
classified_list = pd.concat(classified_list)
html_output, bibtex_entry = transform_chunks(classified_list)
generated_text = f'{css}<h2 style="text-align:center">Edited text</h2>\n<div class="generation">{html_output}</div>'
return generated_text, bibtex_entry
# Create the Falcon chatbot instance
mistral_bot = MistralChatBot()
# Define the Gradio interface
title = "Éditorialisation"
description = "Un outil expérimental d'identification de la structure du texte à partir d'un encoder (Deberta)"
examples = [
[
"Qui peut bénéficier de l'AIP?", # user_message
0.7 # temperature
]
]
demo = gr.Blocks()
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.HTML("""<h1 style="text-align:center">Reversed Zotero</h1>""")
text_input = gr.Textbox(label="Your text", type="text", lines=1)
text_button = gr.Button("Extract a structured bibtex")
text_output = gr.HTML(label="Metadata")
bibtex_output = gr.Textbox(label="BibTeX Entry", lines=10)
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output, bibtex_output])
if __name__ == "__main__":
demo.queue().launch()