Paul DAMPFHOEFFER
commited on
Commit
·
cbe05b5
1
Parent(s):
cd782ec
fix: small fix
Browse files
app.py
CHANGED
|
@@ -13,17 +13,23 @@ def greet_json():
|
|
| 13 |
|
| 14 |
@app.post("/")
|
| 15 |
async def aria_image_to_text(request: Request):
|
|
|
|
| 16 |
data = await request.json()
|
|
|
|
| 17 |
image_url = data.get("image_url")
|
|
|
|
|
|
|
|
|
|
| 18 |
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 19 |
-
|
| 20 |
model_id_or_path = "rhymes-ai/Aria"
|
|
|
|
| 21 |
model = AriaForConditionalGeneration.from_pretrained(
|
| 22 |
model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
|
| 23 |
)
|
| 24 |
-
|
| 25 |
processor = AriaProcessor.from_pretrained(model_id_or_path)
|
| 26 |
-
|
| 27 |
messages = [
|
| 28 |
{
|
| 29 |
"role": "user",
|
|
@@ -34,11 +40,15 @@ async def aria_image_to_text(request: Request):
|
|
| 34 |
}
|
| 35 |
]
|
| 36 |
|
|
|
|
| 37 |
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
|
|
| 38 |
inputs = processor(text=text, images=image, return_tensors="pt")
|
|
|
|
| 39 |
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
|
|
|
| 40 |
inputs.to(model.device)
|
| 41 |
-
|
| 42 |
output = model.generate(
|
| 43 |
**inputs,
|
| 44 |
max_new_tokens=15,
|
|
@@ -47,21 +57,26 @@ async def aria_image_to_text(request: Request):
|
|
| 47 |
do_sample=True,
|
| 48 |
temperature=0.9,
|
| 49 |
)
|
|
|
|
| 50 |
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
|
|
|
| 51 |
response = processor.decode(output_ids, skip_special_tokens=True)
|
|
|
|
| 52 |
return {"response": response}
|
| 53 |
|
| 54 |
@app.get("/aria-test")
|
| 55 |
def aria_test():
|
|
|
|
| 56 |
model_id_or_path = "rhymes-ai/Aria"
|
|
|
|
| 57 |
model = AriaForConditionalGeneration.from_pretrained(
|
| 58 |
model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
|
| 59 |
)
|
| 60 |
-
|
| 61 |
processor = AriaProcessor.from_pretrained(model_id_or_path)
|
| 62 |
-
|
| 63 |
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
| 64 |
-
|
| 65 |
messages = [
|
| 66 |
{
|
| 67 |
"role": "user",
|
|
@@ -71,12 +86,15 @@ def aria_test():
|
|
| 71 |
],
|
| 72 |
}
|
| 73 |
]
|
| 74 |
-
|
| 75 |
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
|
|
| 76 |
inputs = processor(text=text, images=image, return_tensors="pt")
|
|
|
|
| 77 |
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
|
|
|
| 78 |
inputs.to(model.device)
|
| 79 |
-
|
| 80 |
output = model.generate(
|
| 81 |
**inputs,
|
| 82 |
max_new_tokens=15,
|
|
@@ -86,5 +104,7 @@ def aria_test():
|
|
| 86 |
temperature=0.9,
|
| 87 |
)
|
| 88 |
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
|
|
|
| 89 |
response = processor.decode(output_ids, skip_special_tokens=True)
|
| 90 |
-
|
|
|
|
|
|
| 13 |
|
| 14 |
@app.post("/")
|
| 15 |
async def aria_image_to_text(request: Request):
|
| 16 |
+
print(1)
|
| 17 |
data = await request.json()
|
| 18 |
+
print(2)
|
| 19 |
image_url = data.get("image_url")
|
| 20 |
+
print(3)
|
| 21 |
+
print('image_url')
|
| 22 |
+
print(image_url)
|
| 23 |
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 24 |
+
print(4)
|
| 25 |
model_id_or_path = "rhymes-ai/Aria"
|
| 26 |
+
print(5)
|
| 27 |
model = AriaForConditionalGeneration.from_pretrained(
|
| 28 |
model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
|
| 29 |
)
|
| 30 |
+
print(6)
|
| 31 |
processor = AriaProcessor.from_pretrained(model_id_or_path)
|
| 32 |
+
print(7)
|
| 33 |
messages = [
|
| 34 |
{
|
| 35 |
"role": "user",
|
|
|
|
| 40 |
}
|
| 41 |
]
|
| 42 |
|
| 43 |
+
print(8)
|
| 44 |
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 45 |
+
print(9)
|
| 46 |
inputs = processor(text=text, images=image, return_tensors="pt")
|
| 47 |
+
print(10)
|
| 48 |
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
| 49 |
+
print(11)
|
| 50 |
inputs.to(model.device)
|
| 51 |
+
print(12)
|
| 52 |
output = model.generate(
|
| 53 |
**inputs,
|
| 54 |
max_new_tokens=15,
|
|
|
|
| 57 |
do_sample=True,
|
| 58 |
temperature=0.9,
|
| 59 |
)
|
| 60 |
+
print(13)
|
| 61 |
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
| 62 |
+
print(14)
|
| 63 |
response = processor.decode(output_ids, skip_special_tokens=True)
|
| 64 |
+
print(15)
|
| 65 |
return {"response": response}
|
| 66 |
|
| 67 |
@app.get("/aria-test")
|
| 68 |
def aria_test():
|
| 69 |
+
print(1)
|
| 70 |
model_id_or_path = "rhymes-ai/Aria"
|
| 71 |
+
print(2)
|
| 72 |
model = AriaForConditionalGeneration.from_pretrained(
|
| 73 |
model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
|
| 74 |
)
|
| 75 |
+
print(3)
|
| 76 |
processor = AriaProcessor.from_pretrained(model_id_or_path)
|
| 77 |
+
print(4)
|
| 78 |
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
| 79 |
+
print(5)
|
| 80 |
messages = [
|
| 81 |
{
|
| 82 |
"role": "user",
|
|
|
|
| 86 |
],
|
| 87 |
}
|
| 88 |
]
|
| 89 |
+
print(6)
|
| 90 |
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 91 |
+
print(7)
|
| 92 |
inputs = processor(text=text, images=image, return_tensors="pt")
|
| 93 |
+
print(8)
|
| 94 |
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
| 95 |
+
print(9)
|
| 96 |
inputs.to(model.device)
|
| 97 |
+
print(10)
|
| 98 |
output = model.generate(
|
| 99 |
**inputs,
|
| 100 |
max_new_tokens=15,
|
|
|
|
| 104 |
temperature=0.9,
|
| 105 |
)
|
| 106 |
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
| 107 |
+
print(11)
|
| 108 |
response = processor.decode(output_ids, skip_special_tokens=True)
|
| 109 |
+
print(12)
|
| 110 |
+
return {"response": response}
|