Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,126 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from subprocess import run
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import
|
8 |
-
from
|
9 |
-
import whisper_timestamped as whisper
|
10 |
-
from transformers import pipeline
|
11 |
|
12 |
-
model =
|
13 |
-
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions", use_fast=True)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
print("cwd", os.getcwd())
|
20 |
-
print(os.listdir())
|
21 |
|
22 |
def analyze_sentiment(text):
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
return sentiment_results
|
26 |
|
27 |
|
28 |
-
def
|
29 |
-
audio =
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
current_path = os.getcwd()
|
39 |
-
common_uuid = uuid.uuid4()
|
40 |
-
audio_file = f"{common_uuid}.wav"
|
41 |
-
run(["ffmpeg", "-i", 'test_video_1.mp4', audio_file])
|
42 |
|
43 |
-
|
44 |
|
45 |
-
return response
|
46 |
|
47 |
gr.Interface(
|
48 |
fn=video_to_audio,
|
49 |
-
inputs=gr.Video(),
|
50 |
outputs=gr.Textbox()
|
51 |
).launch()
|
|
|
1 |
+
import math
|
2 |
+
from io import BytesIO
|
|
|
3 |
import gradio as gr
|
4 |
+
import cv2
|
5 |
+
import requests
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from faster_whisper import WhisperModel
|
|
|
|
|
8 |
|
9 |
+
model = WhisperModel("small", device="cpu", compute_type="int8")
|
|
|
10 |
|
11 |
+
API_KEY = os.getenv("API_KEY")
|
12 |
+
|
13 |
+
FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
|
14 |
+
TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
|
15 |
+
headers = {"Authorization": "Bearer " + API_KEY + ""}
|
16 |
+
|
17 |
+
|
18 |
+
def extract_frames(video_path):
|
19 |
+
cap = cv2.VideoCapture(video_path)
|
20 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
21 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
22 |
+
interval = fps
|
23 |
+
result = []
|
24 |
+
|
25 |
+
for i in range(0, total_frames, interval):
|
26 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
27 |
+
ret, frame = cap.read()
|
28 |
+
if ret:
|
29 |
+
_, img_encoded = cv2.imencode('.jpg', frame)
|
30 |
+
img_bytes = img_encoded.tobytes()
|
31 |
+
|
32 |
+
response = requests.post(FACE_API_URL, headers=headers, data=img_bytes)
|
33 |
+
result.append({item['label']: item['score'] for item in response.json()})
|
34 |
+
|
35 |
+
print("Frame extraction completed.")
|
36 |
+
|
37 |
+
cap.release()
|
38 |
+
print(result)
|
39 |
+
return result
|
40 |
|
|
|
|
|
41 |
|
42 |
def analyze_sentiment(text):
|
43 |
+
response = requests.post(TEXT_API_URL, headers=headers, json=text)
|
44 |
+
print(response.json())
|
45 |
+
sentiment_list = response.json()[0]
|
46 |
+
print(sentiment_list)
|
47 |
+
sentiment_results = {result['label']: result['score'] for result in sentiment_list}
|
48 |
return sentiment_results
|
49 |
|
50 |
|
51 |
+
def video_to_audio(input_video):
|
52 |
+
audio = AudioSegment.from_file('test_video_1.mp4')
|
53 |
+
audio_binary = audio.export(format="wav").read()
|
54 |
+
audio_bytesio = BytesIO(audio_binary)
|
55 |
+
|
56 |
+
segments, info = model.transcribe(audio_bytesio, beam_size=5)
|
57 |
+
|
58 |
+
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
|
59 |
+
|
60 |
+
frames_sentiments = extract_frames(input_video)
|
61 |
+
|
62 |
+
transcript = ''
|
63 |
+
final_output = []
|
64 |
+
for segment in segments:
|
65 |
+
transcript = transcript + segment.text + " "
|
66 |
+
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
67 |
+
transcript_segment_sentiment = analyze_sentiment(segment.text)
|
68 |
+
|
69 |
+
emotion_totals = {
|
70 |
+
'admiration': 0.0,
|
71 |
+
'amusement': 0.0,
|
72 |
+
'angry': 0.0,
|
73 |
+
'annoyance': 0.0,
|
74 |
+
'approval': 0.0,
|
75 |
+
'caring': 0.0,
|
76 |
+
'confusion': 0.0,
|
77 |
+
'curiosity': 0.0,
|
78 |
+
'desire': 0.0,
|
79 |
+
'disappointment': 0.0,
|
80 |
+
'disapproval': 0.0,
|
81 |
+
'disgust': 0.0,
|
82 |
+
'embarrassment': 0.0,
|
83 |
+
'excitement': 0.0,
|
84 |
+
'fear': 0.0,
|
85 |
+
'gratitude': 0.0,
|
86 |
+
'grief': 0.0,
|
87 |
+
'happy': 0.0,
|
88 |
+
'love': 0.0,
|
89 |
+
'nervousness': 0.0,
|
90 |
+
'optimism': 0.0,
|
91 |
+
'pride': 0.0,
|
92 |
+
'realization': 0.0,
|
93 |
+
'relief': 0.0,
|
94 |
+
'remorse': 0.0,
|
95 |
+
'sad': 0.0,
|
96 |
+
'surprise': 0.0,
|
97 |
+
'neutral': 0.0
|
98 |
+
}
|
99 |
+
|
100 |
+
counter = 0
|
101 |
+
for i in range(math.ceil(segment.start), math.floor(segment.end)):
|
102 |
+
for emotion in frames_sentiments[i].keys():
|
103 |
+
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
|
104 |
+
counter += 1
|
105 |
+
|
106 |
+
for emotion in emotion_totals:
|
107 |
+
emotion_totals[emotion] /= counter
|
108 |
|
109 |
+
video_segment_sentiment = emotion_totals
|
110 |
|
111 |
+
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment,
|
112 |
+
video_segment_sentiment)}
|
113 |
+
final_output.append(segment_finals)
|
114 |
+
print(segment_finals)
|
115 |
+
print(final_output)
|
116 |
|
117 |
+
print(final_output)
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
return final_output
|
120 |
|
|
|
121 |
|
122 |
gr.Interface(
|
123 |
fn=video_to_audio,
|
124 |
+
inputs=gr.Video(sources=["upload"]),
|
125 |
outputs=gr.Textbox()
|
126 |
).launch()
|