Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import json
|
| 3 |
from flask import Flask, jsonify, request
|
| 4 |
from transformers import pipeline
|
|
|
|
| 5 |
|
| 6 |
# Create a Flask app
|
| 7 |
app = Flask(__name__)
|
|
@@ -19,6 +20,11 @@ def download_models():
|
|
| 19 |
# Download model when the server starts
|
| 20 |
download_models()
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
@app.route('/detect', methods=['POST'])
|
| 23 |
def detect_deepfake():
|
| 24 |
# Expect an audio file in the request
|
|
@@ -28,15 +34,20 @@ def detect_deepfake():
|
|
| 28 |
if audio_file:
|
| 29 |
try:
|
| 30 |
# Save the uploaded file temporarily
|
| 31 |
-
|
| 32 |
-
audio_file.save(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Perform detection
|
| 35 |
-
result = audio_model(
|
| 36 |
result_dict = {item['label']: item['score'] for item in result}
|
| 37 |
|
| 38 |
-
# Remove the temporary
|
| 39 |
-
os.remove(
|
|
|
|
| 40 |
|
| 41 |
return jsonify({"message": "Detection completed", "results": result_dict}), 200
|
| 42 |
|
|
|
|
| 2 |
import json
|
| 3 |
from flask import Flask, jsonify, request
|
| 4 |
from transformers import pipeline
|
| 5 |
+
from pydub import AudioSegment
|
| 6 |
|
| 7 |
# Create a Flask app
|
| 8 |
app = Flask(__name__)
|
|
|
|
| 20 |
# Download model when the server starts
|
| 21 |
download_models()
|
| 22 |
|
| 23 |
+
def convert_audio_to_wav(input_path, output_path):
|
| 24 |
+
# Convert any audio format to WAV using pydub
|
| 25 |
+
audio = AudioSegment.from_file(input_path)
|
| 26 |
+
audio.export(output_path, format="wav")
|
| 27 |
+
|
| 28 |
@app.route('/detect', methods=['POST'])
|
| 29 |
def detect_deepfake():
|
| 30 |
# Expect an audio file in the request
|
|
|
|
| 34 |
if audio_file:
|
| 35 |
try:
|
| 36 |
# Save the uploaded file temporarily
|
| 37 |
+
input_path = os.path.join("/tmp", audio_file.filename)
|
| 38 |
+
audio_file.save(input_path)
|
| 39 |
+
|
| 40 |
+
# Convert the file to WAV format
|
| 41 |
+
output_path = os.path.splitext(input_path)[0] + '.wav'
|
| 42 |
+
convert_audio_to_wav(input_path, output_path)
|
| 43 |
|
| 44 |
# Perform detection
|
| 45 |
+
result = audio_model(output_path)
|
| 46 |
result_dict = {item['label']: item['score'] for item in result}
|
| 47 |
|
| 48 |
+
# Remove the temporary files
|
| 49 |
+
os.remove(input_path)
|
| 50 |
+
os.remove(output_path)
|
| 51 |
|
| 52 |
return jsonify({"message": "Detection completed", "results": result_dict}), 200
|
| 53 |
|