Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import json
|
3 |
from flask import Flask, jsonify, request
|
4 |
from transformers import pipeline
|
|
|
5 |
|
6 |
# Create a Flask app
|
7 |
app = Flask(__name__)
|
@@ -19,6 +20,11 @@ def download_models():
|
|
19 |
# Download model when the server starts
|
20 |
download_models()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
@app.route('/detect', methods=['POST'])
|
23 |
def detect_deepfake():
|
24 |
# Expect an audio file in the request
|
@@ -28,15 +34,20 @@ def detect_deepfake():
|
|
28 |
if audio_file:
|
29 |
try:
|
30 |
# Save the uploaded file temporarily
|
31 |
-
|
32 |
-
audio_file.save(
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Perform detection
|
35 |
-
result = audio_model(
|
36 |
result_dict = {item['label']: item['score'] for item in result}
|
37 |
|
38 |
-
# Remove the temporary
|
39 |
-
os.remove(
|
|
|
40 |
|
41 |
return jsonify({"message": "Detection completed", "results": result_dict}), 200
|
42 |
|
|
|
2 |
import json
|
3 |
from flask import Flask, jsonify, request
|
4 |
from transformers import pipeline
|
5 |
+
from pydub import AudioSegment
|
6 |
|
7 |
# Create a Flask app
|
8 |
app = Flask(__name__)
|
|
|
20 |
# Download model when the server starts
|
21 |
download_models()
|
22 |
|
23 |
+
def convert_audio_to_wav(input_path, output_path):
|
24 |
+
# Convert any audio format to WAV using pydub
|
25 |
+
audio = AudioSegment.from_file(input_path)
|
26 |
+
audio.export(output_path, format="wav")
|
27 |
+
|
28 |
@app.route('/detect', methods=['POST'])
|
29 |
def detect_deepfake():
|
30 |
# Expect an audio file in the request
|
|
|
34 |
if audio_file:
|
35 |
try:
|
36 |
# Save the uploaded file temporarily
|
37 |
+
input_path = os.path.join("/tmp", audio_file.filename)
|
38 |
+
audio_file.save(input_path)
|
39 |
+
|
40 |
+
# Convert the file to WAV format
|
41 |
+
output_path = os.path.splitext(input_path)[0] + '.wav'
|
42 |
+
convert_audio_to_wav(input_path, output_path)
|
43 |
|
44 |
# Perform detection
|
45 |
+
result = audio_model(output_path)
|
46 |
result_dict = {item['label']: item['score'] for item in result}
|
47 |
|
48 |
+
# Remove the temporary files
|
49 |
+
os.remove(input_path)
|
50 |
+
os.remove(output_path)
|
51 |
|
52 |
return jsonify({"message": "Detection completed", "results": result_dict}), 200
|
53 |
|