Spaces:
Runtime error
Runtime error
import os | |
import json | |
from flask import Flask, jsonify, request | |
from transformers import pipeline | |
# Create a Flask app | |
app = Flask(__name__) | |
# Initialize the audio model at the start of the API | |
audio_model = None | |
def download_models(): | |
global audio_model | |
print("Downloading audio model...") | |
# Download and load the audio model | |
audio_model = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2") | |
print("Audio model downloaded and ready to use.") | |
# Download the model when the server starts | |
download_models() | |
def detect_deepfake(): | |
folder_path = request.form.get('folder_path') | |
if not folder_path or not os.path.isdir(folder_path): | |
return jsonify({"error": "Invalid folder path"}), 400 | |
results = {} | |
try: | |
# Process audio files only | |
for file_name in os.listdir(folder_path): | |
if file_name.endswith('.wav') or file_name.endswith('.mp3'): | |
file_path = os.path.join(folder_path, file_name) | |
result = audio_model(file_path) | |
results[file_name] = {item['label']: item['score'] for item in result} | |
# Save results to a file | |
with open('detection_results.json', 'w') as f: | |
f.write(json.dumps(results)) | |
return jsonify({"message": "Detection completed", "results": results}), 200 | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
if __name__ == '__main__': | |
# Run the Flask app | |
app.run(host='0.0.0.0', port=7860) | |