Spaces:
Runtime error
Runtime error
import os | |
import json | |
from flask import Flask, jsonify, request | |
from transformers import pipeline | |
# Create a Flask app | |
app = Flask(__name__) | |
# Initialize models at the start of the API | |
audio_model = None | |
def download_models(): | |
global audio_model | |
print("Downloading models...") | |
# Download and load the audio model with padding enabled | |
audio_model = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2", padding=True) | |
print("Model downloaded and ready to use.") | |
# Download model when the server starts | |
download_models() | |
def detect_deepfake(): | |
# Expect an audio file in the request | |
audio_file = request.files.get('audio_file') | |
# If a single audio file is provided | |
if audio_file: | |
try: | |
# Save the uploaded file temporarily | |
file_path = os.path.join("/tmp", audio_file.filename) | |
audio_file.save(file_path) | |
# Perform detection | |
result = audio_model(file_path) | |
result_dict = {item['label']: item['score'] for item in result} | |
# Remove the temporary file | |
os.remove(file_path) | |
return jsonify({"message": "Detection completed", "results": result_dict}), 200 | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
# Invalid request if no audio file is provided | |
else: | |
return jsonify({"error": "Invalid input. Please provide an audio file."}), 400 | |
if __name__ == '__main__': | |
# Run the Flask app | |
app.run(host='0.0.0.0', port=7860) | |