Spaces:
Runtime error
Runtime error
File size: 1,562 Bytes
be0f58d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import os
import json
from flask import Flask, jsonify, request
from transformers import pipeline
# Create a Flask app
app = Flask(__name__)
# Initialize the audio model at the start of the API
audio_model = None
def download_models():
global audio_model
print("Downloading audio model...")
# Download and load the audio model
audio_model = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2")
print("Audio model downloaded and ready to use.")
# Download the model when the server starts
download_models()
@app.route('/detect', methods=['POST'])
def detect_deepfake():
folder_path = request.form.get('folder_path')
if not folder_path or not os.path.isdir(folder_path):
return jsonify({"error": "Invalid folder path"}), 400
results = {}
try:
# Process audio files only
for file_name in os.listdir(folder_path):
if file_name.endswith('.wav') or file_name.endswith('.mp3'):
file_path = os.path.join(folder_path, file_name)
result = audio_model(file_path)
results[file_name] = {item['label']: item['score'] for item in result}
# Save results to a file
with open('detection_results.json', 'w') as f:
f.write(json.dumps(results))
return jsonify({"message": "Detection completed", "results": results}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
# Run the Flask app
app.run(host='0.0.0.0', port=5000)
|