import streamlit as st from transformers import pipeline # Title and description st.title("Fine-Tuned Model Deployment") st.markdown( """ ### Welcome to the Fine-Tuned Model Inference App! Enter your input text below, and the model will generate a response based on the fine-tuned Llama model. """ ) # Load the model @st.cache_resource def load_model(): return pipeline("text-generation", model="Partababc/Mixtral-function-call-finetune") model = load_model() # Input box for user query user_input = st.text_area("Enter your prompt:", height=150) # Generate text button if st.button("Generate Text"): if user_input.strip(): with st.spinner("Generating response..."): # Generate response result = model(user_input, max_length=150, num_return_sequences=1) generated_text = result[0]["generated_text"] # Display the generated text st.markdown("### Generated Text:") st.write(generated_text) else: st.warning("Please enter some text to generate a response.") # Footer st.markdown("---") st.markdown("**Fine-Tuned Model powered by Hugging Face Transformers.**")