Spaces:
Sleeping
Sleeping
requirements.txt
Browse filesstreamlit
transformers
torch
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Title and description
|
5 |
+
st.title("Fine-Tuned Model Deployment")
|
6 |
+
st.markdown(
|
7 |
+
"""
|
8 |
+
### Welcome to the Fine-Tuned Model Inference App!
|
9 |
+
Enter your input text below, and the model will generate a response based on the fine-tuned Llama model.
|
10 |
+
"""
|
11 |
+
)
|
12 |
+
|
13 |
+
# Load the model
|
14 |
+
@st.cache_resource
|
15 |
+
def load_model():
|
16 |
+
return pipeline("text-generation", model="Partababc/Mixtral-function-call-finetune")
|
17 |
+
|
18 |
+
model = load_model()
|
19 |
+
|
20 |
+
# Input box for user query
|
21 |
+
user_input = st.text_area("Enter your prompt:", height=150)
|
22 |
+
|
23 |
+
# Generate text button
|
24 |
+
if st.button("Generate Text"):
|
25 |
+
if user_input.strip():
|
26 |
+
with st.spinner("Generating response..."):
|
27 |
+
# Generate response
|
28 |
+
result = model(user_input, max_length=150, num_return_sequences=1)
|
29 |
+
generated_text = result[0]["generated_text"]
|
30 |
+
|
31 |
+
# Display the generated text
|
32 |
+
st.markdown("### Generated Text:")
|
33 |
+
st.write(generated_text)
|
34 |
+
else:
|
35 |
+
st.warning("Please enter some text to generate a response.")
|
36 |
+
|
37 |
+
# Footer
|
38 |
+
st.markdown("---")
|
39 |
+
st.markdown("**Fine-Tuned Model powered by Hugging Face Transformers.**")
|