Spaces:
Running
Running
import cv2 | |
import numpy as np | |
from skimage.feature import local_binary_pattern | |
import matplotlib.pyplot as plt | |
import dlib | |
import imutils | |
import os | |
from PIL import Image | |
from utils.cv_utils import get_image | |
from typing import Tuple | |
#TODO: face texture class - face detector and output face | |
#TODO: create YAML file to point towards static parameters | |
#TODO: Test main output and app | |
#TODO: Consider using other method for face detector - this one not as reliable | |
#TODO: Text output showing other examples - celeb, child, gender | |
class GetFaceTexture: | |
def __init__(self) -> None: | |
pass | |
def preprocess_image(self, image) -> np.array: | |
image = imutils.resize(image, width=800) | |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
return gray_image | |
def get_face(self, gray_image: np.array) -> np.array: | |
detector = dlib.get_frontal_face_detector() | |
faces = detector(gray_image, 1) | |
if len(faces) == 0: | |
return "No face detected." | |
x, y, w, h = (faces[0].left(), faces[0].top(), faces[0].width(), faces[0].height()) | |
face_image = gray_image[y:y+h, x:x+w] | |
return face_image | |
def get_face_texture(self, face_image: np.array) -> Tuple[np.array, float]: | |
radius = 1 | |
n_points = 8 * radius | |
lbp = local_binary_pattern(face_image, n_points, radius, method="uniform") | |
hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, n_points + 3), range=(0, n_points + 2)) | |
variance = np.var(hist) | |
std = np.sqrt(variance) | |
return lbp, std | |
def postprocess_image(self, lbp: np.array) -> Image: | |
lbp = (lbp * 255).astype(np.uint8) | |
return Image.fromarray(lbp) | |
def main(self, image_input) -> Image: | |
image = get_image(image_input) | |
gray_image = self.preprocess_image(image) | |
face_image = self.get_face(gray_image) | |
lbp, std = self.get_face_texture(face_image) | |
face_texture_image = self.postprocess_image(lbp) | |
return face_texture_image, face_image, std | |
if __name__ == "__main__": | |
image_path = 'data/images_symmetry/gigi_hadid.webp' | |
print(GetFaceTexture().main(image_path)) | |