Spaces:
Running
Running
File size: 5,844 Bytes
4ff0905 0347340 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 988dde3 4ff0905 c3143ea 4ff0905 c3143ea 988dde3 0347340 988dde3 4ff0905 988dde3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import dlib
import yaml
import cv2
import os
import numpy as np
import imutils
from src.cv_utils import get_image, resize_image_height
from typing import List, Union
from PIL import Image as PILImage
with open("parameters.yml", "r") as stream:
try:
parameters = yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
class GetFaceProportions:
def __init__(self):
pass
@staticmethod
def preprocess_image(image: np.array) -> np.array:
image = imutils.resize(image, width=500)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
@staticmethod
def detect_face_landmarks(gray_image: np.array) -> List[Union[np.array, np.array]]:
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(parameters["face_landmarks"]["model"])
rects = detector(gray_image, 1)
for rect in rects:
shape = predictor(gray_image, rect)
shape = np.array(
[(shape.part(i).x, shape.part(i).y) for i in range(shape.num_parts)]
)
# Draw facial landmarks
for (x, y) in shape:
cv2.circle(gray_image, (x, y), 2, (0, 255, 0), -1)
return shape, gray_image
@staticmethod
def compute_golden_ratios(shape: np.array) -> dict:
top_mouth, middle_mouth, bottom_mouth = shape[51], shape[62], shape[57]
top_nose, bottom_nose = shape[27], shape[33]
bottom_chin = shape[8]
# 1
top_nose_to_middle_mouth_dist = np.linalg.norm(
top_nose - middle_mouth
) # euclidean distance
middle_mouth_to_bottom_chin_dist = np.linalg.norm(middle_mouth - bottom_chin)
ratio_top_nose_to_middle_mouth_vs_middle_mouth_to_bottom_chin = (
top_nose_to_middle_mouth_dist / middle_mouth_to_bottom_chin_dist
)
# 2
top_mouth_to_middle_mouth_dist = np.linalg.norm(top_mouth - middle_mouth)
middle_mouth_to_bottom_mouth_dist = np.linalg.norm(middle_mouth - bottom_mouth)
ratio_middle_mouth_to_bottom_mouth_vs_top_mouth_to_middle_mouth = (
middle_mouth_to_bottom_mouth_dist / top_mouth_to_middle_mouth_dist
)
golden_ratios = {
"top_of_nose_to_middle_of_mouth_vs_middle_mouth_to_bottom_of_chin": ratio_top_nose_to_middle_mouth_vs_middle_mouth_to_bottom_chin,
"middle_of_mouth_to_bottom_of_mouth_vs_top_of_mouth_to_middle_of_mouth": ratio_middle_mouth_to_bottom_mouth_vs_top_mouth_to_middle_mouth,
}
return golden_ratios
@staticmethod
def compute_equal_ratios(shape: np.array) -> dict:
(
left_side_left_eye,
right_side_left_eye,
left_side_right_eye,
right_side_right_eye,
) = (shape[36], shape[39], shape[42], shape[45])
left_eye_top, left_eye_bottom, right_eye_top, right_eye_bottom = (
shape[37],
shape[41],
shape[44],
shape[46],
)
left_eyebrow_top, right_eyebrow_top = shape[19], shape[24]
left_eye_center = np.mean([shape[37], shape[38], shape[41], shape[40]], axis=0)
right_eye_center = np.mean([shape[43], shape[44], shape[47], shape[46]], axis=0)
left_mouth, right_mouth = shape[48], shape[54]
# 1
left_eye_dist = np.linalg.norm(left_side_left_eye - right_side_left_eye)
right_eye_dist = np.linalg.norm(left_side_right_eye - right_side_right_eye)
average_eye_dist = (left_eye_dist + right_eye_dist) / 2
between_eye_dist = np.linalg.norm(right_side_left_eye - left_side_right_eye)
ratio_eyes_width_vs_between_eye = average_eye_dist / between_eye_dist
# 2
left_eye_to_eyebrow_dist = np.linalg.norm(left_eyebrow_top - left_eye_top)
right_eye_to_eyebrow_dist = np.linalg.norm(right_eyebrow_top - right_eye_top)
eye_to_eyebrow_dist = (left_eye_to_eyebrow_dist + right_eye_to_eyebrow_dist) / 2
left_eye_height = np.linalg.norm(left_eye_top - left_eye_bottom)
right_eye_height = np.linalg.norm(right_eye_top - right_eye_bottom)
eye_height = (left_eye_height + right_eye_height) / 2
ratio_eye_to_eyebrow_vs_eye_height = eye_to_eyebrow_dist / eye_height
# 3
left_to_right_eye_center_dist = np.linalg.norm(
left_eye_center - right_eye_center
)
mouth_width = np.linalg.norm(left_mouth - right_mouth)
ratio_left_to_right_eye_center_vs_mouth_width = (
left_to_right_eye_center_dist / mouth_width
)
equal_ratios = {
"eye_width_vs_distance_between_eyes": ratio_eyes_width_vs_between_eye,
"eye_to_eyebrows_vs_eye_height": ratio_eye_to_eyebrow_vs_eye_height,
"center_of_left_to_right_eye_vs_mouth_width": ratio_left_to_right_eye_center_vs_mouth_width,
}
return equal_ratios
def main(self, image_input):
image = get_image(image_input)
gray_image = self.preprocess_image(image)
shape, image = self.detect_face_landmarks(gray_image)
golden_ratios = self.compute_golden_ratios(shape)
golden_ratios = {k: round(v, 2) for k, v in golden_ratios.items()}
equal_ratios = self.compute_equal_ratios(shape)
equal_ratios = {k: round(v, 2) for k, v in equal_ratios.items()}
image = PILImage.fromarray(image)
image = resize_image_height(image, new_height=300)
ratios = {**golden_ratios, **equal_ratios}
return ratios, image
if __name__ == "__main__":
path_to_images = "data/"
image_files = os.listdir(path_to_images)
for image in image_files:
print(image)
results = GetFaceProportions().main(path_to_images + image)
print(results)
|