File size: 5,521 Bytes
4ff0905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import dlib
import yaml
import cv2
import os
import numpy as np
import imutils
from src.cv_utils import get_image
from typing import List, Union
from PIL import Image as PILImage

with open("parameters.yml", "r") as stream:
    try:
        parameters = yaml.safe_load(stream)
    except yaml.YAMLError as exc:
        print(exc)
        
        
class GetFaceProportions:
    def __init__(self):
        self.golden_ratio = 1.618
    
    @staticmethod
    def preprocess_image(image: np.array) -> np.array:
        image = imutils.resize(image, width=500)
        gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        return gray_image

    @staticmethod
    def detect_face_landmarks(gray_image: np.array) -> List[Union[np.array, np.array]]:
        
        detector = dlib.get_frontal_face_detector()
        predictor = dlib.shape_predictor(parameters["face_landmarks"]["model"])
        rects = detector(gray_image, 1)
        for rect in rects:
            shape = predictor(gray_image, rect)
            shape = np.array([(shape.part(i).x, shape.part(i).y) for i in range(shape.num_parts)])

            # Draw facial landmarks
            for (x, y) in shape:
                cv2.circle(gray_image, (x, y), 2, (0, 255, 0), -1)
            
        return shape, gray_image
    
    def compute_golden_ratios(self, shape: np.array) -> dict:
        top_mouth, middle_mouth, bottom_mouth = shape[51], shape[62], shape[57]
        top_nose, bottom_nose = shape[27], shape[33]
        bottom_chin = shape[8]
        
        # 1
        top_nose_to_middle_mouth_dist = np.linalg.norm(top_nose - middle_mouth) # euclidean distance
        middle_mouth_to_bottom_chin_dist = np.linalg.norm(middle_mouth - bottom_chin)
        ratio_top_nose_to_middle_mouth_vs_middle_mouth_to_bottom_chin = top_nose_to_middle_mouth_dist/middle_mouth_to_bottom_chin_dist
        
        # 2
        top_mouth_to_middle_mouth_dist = np.linalg.norm(top_mouth - middle_mouth)
        middle_mouth_to_bottom_mouth_dist = np.linalg.norm(middle_mouth - bottom_mouth)
        ratio_middle_mouth_to_bottom_mouth_vs_top_mouth_to_middle_mouth = middle_mouth_to_bottom_mouth_dist/top_mouth_to_middle_mouth_dist
    
        golden_ratios = {
            "Ideal ratio (golden ratio)": self.golden_ratio,
            "Top of nose to middle of mouth vs middle mouth to bottom of chin": ratio_top_nose_to_middle_mouth_vs_middle_mouth_to_bottom_chin,
            "Middle of mouth to bottom of mouth vs top of mouth to middle of mouth": ratio_middle_mouth_to_bottom_mouth_vs_top_mouth_to_middle_mouth
        }
        return golden_ratios
    
    @staticmethod
    def compute_equal_ratios(shape: np.array) -> dict:
        left_side_left_eye, right_side_left_eye, left_side_right_eye, right_side_right_eye = shape[36], shape[39], shape[42], shape[45]
        left_eye_top, left_eye_bottom, right_eye_top, right_eye_bottom = shape[37], shape[41], shape[44], shape[46]
        left_eyebrow_top, right_eyebrow_top = shape[19], shape[24]
        left_eye_center = np.mean([shape[37], shape[38], shape[41], shape[40]], axis=0)
        right_eye_center = np.mean([shape[43], shape[44], shape[47], shape[46]], axis=0)
        left_mouth, right_mouth = shape[48], shape[54]
        
        # 1
        left_eye_dist = np.linalg.norm(left_side_left_eye - right_side_left_eye)
        right_eye_dist = np.linalg.norm(left_side_right_eye - right_side_right_eye)
        average_eye_dist = (left_eye_dist + right_eye_dist)/2
        between_eye_dist = np.linalg.norm(right_side_left_eye - left_side_right_eye)
        ratio_eyes_width_vs_between_eye = average_eye_dist/between_eye_dist
        
        # 2
        left_eye_to_eyebrow_dist = np.linalg.norm(left_eyebrow_top - left_eye_top)
        right_eye_to_eyebrow_dist = np.linalg.norm(right_eyebrow_top - right_eye_top)
        eye_to_eyebrow_dist = (left_eye_to_eyebrow_dist + right_eye_to_eyebrow_dist)/2
        left_eye_height = np.linalg.norm(left_eye_top - left_eye_bottom)
        right_eye_height = np.linalg.norm(right_eye_top - right_eye_bottom)
        eye_height = (left_eye_height + right_eye_height)/2
        ratio_eye_to_eyebrow_vs_eye_height = eye_to_eyebrow_dist/eye_height
        
        # 3
        left_to_right_eye_center_dist = np.linalg.norm(left_eye_center - right_eye_center)
        mouth_width = np.linalg.norm(left_mouth - right_mouth)
        ratio_left_to_right_eye_center_vs_mouth_width = left_to_right_eye_center_dist/mouth_width
        
        equal_ratios = {
            "Ideal ratio": 1,
            "Eye width vs distance between eyes": ratio_eyes_width_vs_between_eye,
            "Eye to eyebrows vs eye height": ratio_eye_to_eyebrow_vs_eye_height,
            "Center of left to right eye vs mouth width": ratio_left_to_right_eye_center_vs_mouth_width
        }
        return equal_ratios
        

    def main(self, image_input):
        image = get_image(image_input)
        gray_image = self.preprocess_image(image)
        shape, image = self.detect_face_landmarks(gray_image)
        golden_ratios = self.compute_golden_ratios(shape)
        equal_ratios = self.compute_equal_ratios(shape)
        image = PILImage.fromarray(image)        
        return golden_ratios, equal_ratios, image
        

if __name__ == "__main__":
    path_to_images = "data/"
    image_files = os.listdir(path_to_images)
    for image in image_files:
        print(image)
        results = GetFaceProportions().main(path_to_images + image)
        print(results)