Spaces:
Sleeping
Sleeping
fixes
Browse files- app.py +1 -1
- requirements.txt +5 -0
- worker.py +9 -11
app.py
CHANGED
|
@@ -10,7 +10,7 @@ url = 'https://camels.readthedocs.io/_/downloads/en/latest/pdf/'
|
|
| 10 |
r = requests.get(url, stream=True)
|
| 11 |
document_path = Path('metadata.pdf')
|
| 12 |
document_path.write_bytes(r.content)
|
| 13 |
-
|
| 14 |
worker.process_document(document_path)
|
| 15 |
|
| 16 |
def handle_prompt(message, history):
|
|
|
|
| 10 |
r = requests.get(url, stream=True)
|
| 11 |
document_path = Path('metadata.pdf')
|
| 12 |
document_path.write_bytes(r.content)
|
| 13 |
+
# document_path="2022GS.pdf"
|
| 14 |
worker.process_document(document_path)
|
| 15 |
|
| 16 |
def handle_prompt(message, history):
|
requirements.txt
CHANGED
|
@@ -1,4 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
langchain
|
| 2 |
langchain-community
|
| 3 |
langchain-huggingface
|
| 4 |
chromadb
|
|
|
|
|
|
|
|
|
| 1 |
+
pdf2image
|
| 2 |
+
pypdf
|
| 3 |
+
tiktoken
|
| 4 |
langchain
|
| 5 |
langchain-community
|
| 6 |
langchain-huggingface
|
| 7 |
chromadb
|
| 8 |
+
InstructorEmbedding
|
| 9 |
+
huggingface_hub==0.25.2
|
worker.py
CHANGED
|
@@ -5,20 +5,20 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import Chroma
|
| 7 |
from langchain_huggingface import HuggingFaceEndpoint
|
| 8 |
-
|
| 9 |
-
import pip
|
| 10 |
|
| 11 |
-
def install(package):
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
|
| 17 |
-
# Temporal fix for incompatibility between langchain_huggingface and sentence-transformers<2.6
|
| 18 |
# install("sentence-transformers==2.2.2")
|
| 19 |
|
| 20 |
# Check for GPU availability and set the appropriate device for computation.
|
| 21 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 22 |
|
| 23 |
# Global variables
|
| 24 |
conversation_retrieval_chain = None
|
|
@@ -49,11 +49,9 @@ def init_llm():
|
|
| 49 |
#Initialize embeddings using a pre-trained model to represent the text data.
|
| 50 |
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
| 51 |
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
| 52 |
-
|
| 53 |
-
emb_model = SentenceTransformer(embedddings_model)
|
| 54 |
|
| 55 |
embeddings = HuggingFaceInstructEmbeddings(
|
| 56 |
-
model_name=
|
| 57 |
model_kwargs={"device": DEVICE}
|
| 58 |
)
|
| 59 |
|
|
|
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import Chroma
|
| 7 |
from langchain_huggingface import HuggingFaceEndpoint
|
| 8 |
+
# import pip
|
|
|
|
| 9 |
|
| 10 |
+
# def install(package):
|
| 11 |
+
# if hasattr(pip, 'main'):
|
| 12 |
+
# pip.main(['install', package])
|
| 13 |
+
# else:
|
| 14 |
+
# pip._internal.main(['install', package])
|
| 15 |
|
| 16 |
+
# # Temporal fix for incompatibility between langchain_huggingface and sentence-transformers<2.6
|
| 17 |
# install("sentence-transformers==2.2.2")
|
| 18 |
|
| 19 |
# Check for GPU availability and set the appropriate device for computation.
|
| 20 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
# DEVICE = "cpu"
|
| 22 |
|
| 23 |
# Global variables
|
| 24 |
conversation_retrieval_chain = None
|
|
|
|
| 49 |
#Initialize embeddings using a pre-trained model to represent the text data.
|
| 50 |
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
| 51 |
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
|
|
|
|
| 52 |
|
| 53 |
embeddings = HuggingFaceInstructEmbeddings(
|
| 54 |
+
model_name=embedddings_model,
|
| 55 |
model_kwargs={"device": DEVICE}
|
| 56 |
)
|
| 57 |
|