Spaces:
Running
Running
File size: 5,157 Bytes
12a6276 9d5d030 12a6276 ad47898 12a6276 9d5d030 4963b4f 9d5d030 4963b4f 4136261 4963b4f 9d5d030 12a6276 4963b4f 9d5d030 4963b4f 9d5d030 12a6276 ec2f5cd 3fb2bff 4963b4f 3fb2bff 12a6276 4963b4f 12a6276 ad47898 4136261 12a6276 4963b4f 4136261 ec2f5cd 4963b4f 4136261 3fb2bff 9d5d030 4963b4f 9d5d030 4136261 4963b4f 4136261 9d5d030 ec2f5cd 12a6276 ec2f5cd ad47898 ec2f5cd ad47898 ec2f5cd ad47898 ec2f5cd 12a6276 ad47898 4963b4f ad47898 9d5d030 4136261 ec2f5cd 9d5d030 ec2f5cd 9d5d030 ec2f5cd 9d5d030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
from transformers import pipeline, set_seed
import re
import numpy as np
import pandas as pd
import os
# Set a seed for reproducibility
set_seed(42)
# Define two premium generation models for better quality outputs.
premium_models = [
"mistralai/Mistral-7B-v0.1",
"HuggingFaceH4/zephyr-7b-beta"
]
# Define five languages: English, German, Spanish, French, Portuguese.
languages = {
"en": "English",
"de": "German",
"es": "Spanish",
"fr": "French",
"pt": "Portuguese"
}
# Define two cost-effective grammar evaluation models.
grammar_model_names = [
"vennify/t5-base-grammar-correction",
"hassaanik/grammar-correction-model"
]
# Functions to load pipelines on demand.
def load_generation_pipeline(model_name):
try:
return pipeline("text-generation", model=model_name)
except Exception as e:
print(f"Error loading generation model {model_name}: {e}")
return None
def load_grammar_pipeline(model_name):
try:
return pipeline("text2text-generation", model=model_name)
except Exception as e:
print(f"Error loading grammar model {model_name}: {e}")
return None
# Pre-load grammar evaluator pipelines.
rater_models = []
for model_name in grammar_model_names:
p = load_grammar_pipeline(model_name)
if p is not None:
rater_models.append(p)
def clean_text(text):
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
def is_palindrome(text):
cleaned = clean_text(text)
return cleaned == cleaned[::-1]
# Updated prompt that instructs the model to output ONLY the palindrome.
def build_prompt(lang):
return (
f"Instruction: Generate a single original palindrome in {lang}.\n"
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n"
"Do not output any additional text, commentary, or the prompt itself.\n"
"Palindrome: "
)
def grammar_prompt(pal, lang):
return (
f"Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. "
"Return only a number with no explanation.\n\n"
f'"{pal}"\n'
)
def extract_score(text):
match = re.search(r"\d{1,3}", text)
if match:
score = int(match.group())
return min(max(score, 0), 100)
return 0
# Main benchmark function that runs all tests at once and saves results automatically.
def run_benchmark_all():
results = []
for model_name in premium_models:
gen_pipeline = load_generation_pipeline(model_name)
if gen_pipeline is None:
continue
for code, lang in languages.items():
prompt = build_prompt(lang)
try:
gen_output = gen_pipeline(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text'].strip()
except Exception as e:
gen_output = f"Error generating text: {e}"
valid = is_palindrome(gen_output)
cleaned_len = len(clean_text(gen_output))
scores = []
for rater in rater_models:
rprompt = grammar_prompt(gen_output, lang)
try:
rtext = rater(rprompt, max_new_tokens=10)[0]['generated_text']
score = extract_score(rtext)
scores.append(score)
except Exception as e:
scores.append(0)
avg_score = np.mean(scores) if scores else 0
penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5
final_score = round(cleaned_len * penalty, 2)
results.append({
"Model": model_name,
"Language": lang,
"Palindrome": gen_output,
"Valid": "✅" if valid else "❌",
"Length": cleaned_len,
"Grammar Score": avg_score,
"Final Score": final_score
})
# Create DataFrame and sort by Final Score.
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
# Automatically save results to a CSV file.
csv_path = "benchmark_results.csv"
df.to_csv(csv_path, index=False)
print(f"CSV file saved to {os.path.abspath(csv_path)}")
# Return both the DataFrame and the CSV file path for download.
return gr.Dataframe(df), csv_path
# Build the Gradio UI using Blocks for a canvas layout.
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo:
gr.Markdown("# Premium Model Palindrome Benchmark")
gr.Markdown("This benchmark runs automatically over 2 premium text-generation models across 5 languages (English, German, Spanish, French, Portuguese) and saves the results to a CSV file when done.")
with gr.Row():
run_button = gr.Button("Run All Benchmarks")
output_table = gr.Dataframe(label="Benchmark Results")
output_file = gr.File(label="Download CSV Results")
run_button.click(fn=run_benchmark_all, inputs=[], outputs=[output_table, output_file])
demo.launch()
|