File size: 5,116 Bytes
12a6276
9d5d030
12a6276
 
 
 
9d5d030
 
 
4136261
 
 
 
 
 
 
9d5d030
 
4136261
 
 
 
 
 
 
 
 
 
9d5d030
 
 
12a6276
 
4136261
9d5d030
 
4136261
9d5d030
 
 
 
 
 
 
 
 
 
 
 
4136261
9d5d030
 
 
 
 
 
4136261
12a6276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4136261
 
12a6276
4136261
 
 
 
 
 
 
 
 
 
 
 
 
9d5d030
4136261
9d5d030
4136261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d5d030
12a6276
 
 
4136261
 
 
 
9d5d030
 
4136261
9d5d030
 
4136261
9d5d030
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
from transformers import pipeline, set_seed
import re
import numpy as np
import pandas as pd

# Set a seed for reproducibility
set_seed(42)

# Define five small models for generation (free, lightweight)
small_models = [
    "distilgpt2",                    # ~82M parameters
    "gpt2",                          # ~124M parameters
    "EleutherAI/gpt-neo-125M",         # ~125M parameters
    "sshleifer/tiny-gpt2",           # extremely small variant
    "microsoft/DialoGPT-small"       # dialoGPT in small size
]

# Define five languages (English, German, Spanish, French, Portuguese)
languages = {
    "en": "English",
    "de": "German",
    "es": "Spanish",
    "fr": "French",
    "pt": "Portuguese"
}

# Define two cost-effective grammar evaluation models
grammar_model_names = [
    "vennify/t5-base-grammar-correction",
    "hassaanik/grammar-correction-model"
]

# Functions to load pipelines on demand
def load_generation_pipeline(model_name):
    try:
        # Use text-generation pipeline for causal LM models
        return pipeline("text-generation", model=model_name)
    except Exception as e:
        print(f"Error loading generation model {model_name}: {e}")
        return None

def load_grammar_pipeline(model_name):
    try:
        return pipeline("text2text-generation", model=model_name)
    except Exception as e:
        print(f"Error loading grammar model {model_name}: {e}")
        return None

# Pre-load grammar evaluator pipelines
rater_models = []
for model_name in grammar_model_names:
    p = load_grammar_pipeline(model_name)
    if p is not None:
        rater_models.append(p)

# Utility functions for checking palindromes and cleaning text
def clean_text(text):
    return re.sub(r'[^a-zA-Z0-9]', '', text.lower())

def is_palindrome(text):
    cleaned = clean_text(text)
    return cleaned == cleaned[::-1]

def grammar_prompt(pal, lang):
    return f'''Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. Only return a number with no explanation:\n\n"{pal}"\n'''

def extract_score(text):
    match = re.search(r"\d{1,3}", text)
    if match:
        score = int(match.group())
        return min(max(score, 0), 100)
    return 0

# Main benchmark function that runs all tests at once
def run_benchmark_all():
    results = []
    for model_name in small_models:
        # Load the generation pipeline for the current small model
        gen_pipeline = load_generation_pipeline(model_name)
        if gen_pipeline is None:
            continue  # Skip if model fails to load

        for code, lang in languages.items():
            # Prompt for generating a palindrome in the given language
            prompt = (
                f"Write the longest original palindrome you can in {lang}. "
                "It should be creative and not a known palindrome. "
                "If it is not a correct palindrome, you will lose points according to how correct it is."
            )
            try:
                gen_output = gen_pipeline(prompt, max_new_tokens=50, do_sample=True)[0]['generated_text'].strip()
            except Exception as e:
                gen_output = f"Error generating text: {e}"
            
            valid = is_palindrome(gen_output)
            cleaned_len = len(clean_text(gen_output))
            
            # Measure grammar evaluation using both rater models
            scores = []
            for rater in rater_models:
                rprompt = grammar_prompt(gen_output, lang)
                try:
                    rtext = rater(rprompt, max_new_tokens=10)[0]['generated_text']
                    score = extract_score(rtext)
                    scores.append(score)
                except Exception as e:
                    scores.append(0)
            avg_score = np.mean(scores) if scores else 0
            # Apply a penalty if the text is not a valid palindrome
            penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5
            final_score = round(cleaned_len * penalty, 2)
            
            results.append({
                "Model": model_name,
                "Language": lang,
                "Palindrome": gen_output,
                "Valid": "✅" if valid else "❌",
                "Length": cleaned_len,
                "Grammar Score": avg_score,
                "Final Score": final_score
            })
    
    df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
    return gr.Dataframe(df)

# Build Gradio UI using Blocks (canvas layout)
with gr.Blocks(title="Small Model Palindrome Benchmark") as demo:
    gr.Markdown("# Small Model Palindrome Benchmark")
    gr.Markdown("This benchmark runs automatically during the night over 5 small text-generation models and 5 languages (English, German, Spanish, French, Portuguese). All tests are run at once.")
    
    with gr.Row():
        run_button = gr.Button("Run All Benchmarks")
    output_table = gr.Dataframe(label="Benchmark Results")
    
    run_button.click(fn=run_benchmark_all, inputs=[], outputs=output_table)

demo.launch()