Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| torch::Tensor | |
| z_order_encode( | |
| const torch::Tensor& x, | |
| const torch::Tensor& y, | |
| const torch::Tensor& z | |
| ) { | |
| // Allocate output tensor | |
| torch::Tensor codes = torch::empty_like(x); | |
| // Call CUDA kernel | |
| z_order_encode_cuda<<<(x.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
| x.size(0), | |
| reinterpret_cast<uint32_t*>(x.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(y.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(z.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(codes.data_ptr<int>()) | |
| ); | |
| return codes; | |
| } | |
| std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> | |
| z_order_decode( | |
| const torch::Tensor& codes | |
| ) { | |
| // Allocate output tensors | |
| torch::Tensor x = torch::empty_like(codes); | |
| torch::Tensor y = torch::empty_like(codes); | |
| torch::Tensor z = torch::empty_like(codes); | |
| // Call CUDA kernel | |
| z_order_decode_cuda<<<(codes.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
| codes.size(0), | |
| reinterpret_cast<uint32_t*>(codes.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(x.data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(y.data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(z.data_ptr<int>()) | |
| ); | |
| return std::make_tuple(x, y, z); | |
| } | |
| torch::Tensor | |
| hilbert_encode( | |
| const torch::Tensor& x, | |
| const torch::Tensor& y, | |
| const torch::Tensor& z | |
| ) { | |
| // Allocate output tensor | |
| torch::Tensor codes = torch::empty_like(x); | |
| // Call CUDA kernel | |
| hilbert_encode_cuda<<<(x.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
| x.size(0), | |
| reinterpret_cast<uint32_t*>(x.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(y.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(z.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(codes.data_ptr<int>()) | |
| ); | |
| return codes; | |
| } | |
| std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> | |
| hilbert_decode( | |
| const torch::Tensor& codes | |
| ) { | |
| // Allocate output tensors | |
| torch::Tensor x = torch::empty_like(codes); | |
| torch::Tensor y = torch::empty_like(codes); | |
| torch::Tensor z = torch::empty_like(codes); | |
| // Call CUDA kernel | |
| hilbert_decode_cuda<<<(codes.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
| codes.size(0), | |
| reinterpret_cast<uint32_t*>(codes.contiguous().data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(x.data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(y.data_ptr<int>()), | |
| reinterpret_cast<uint32_t*>(z.data_ptr<int>()) | |
| ); | |
| return std::make_tuple(x, y, z); | |
| } | |
