Spaces:
Running
Running
File size: 14,088 Bytes
f5f3483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to patch JAX functions with faked implementations.
This module provides fake implementations of jax.jit and jax.pmap, which can be
patched over existing implementations for easier debugging.
See https://www.martinfowler.com/articles/mocksArentStubs.html
"""
import contextlib
import functools
import inspect
import os
import re
from typing import Any, Callable, Iterable, Optional, Union
from unittest import mock
from absl import flags
import jax
import jax.numpy as jnp
FLAGS = flags.FLAGS
flags.DEFINE_integer('chex_n_cpu_devices', 1,
'Number of CPU threads to use as devices in tests.')
flags.DEFINE_bool('chex_assert_multiple_cpu_devices', False,
'Whether to fail if a number of CPU devices is less than 2.')
_xla_device_count_flag_regexp = (
r'[-]{0,2}xla_force_host_platform_device_count=(\d+)?(\s|$)')
def get_n_cpu_devices_from_xla_flags() -> int:
"""Parses number of CPUs from the XLA environment flags."""
m = re.match(_xla_device_count_flag_regexp, os.getenv('XLA_FLAGS', ''))
# At least one CPU device must be available.
n_devices = int(m.group(1)) if m else 1
return n_devices
def set_n_cpu_devices(n: Optional[int] = None) -> None:
"""Forces XLA to use `n` CPU threads as host devices.
This allows `jax.pmap` to be tested on a single-CPU platform.
This utility only takes effect before XLA backends are initialized, i.e.
before any JAX operation is executed (including `jax.devices()` etc.).
See https://github.com/google/jax/issues/1408.
Args:
n: A required number of CPU devices (``FLAGS.chex_n_cpu_devices`` is used by
default).
Raises:
RuntimeError: If XLA backends were already initialized.
"""
n = n or FLAGS['chex_n_cpu_devices'].value
n_devices = get_n_cpu_devices_from_xla_flags()
cpu_backend = (jax.lib.xla_bridge._backends or {}).get('cpu', None) # pylint: disable=protected-access
if cpu_backend is not None and n_devices != n:
raise RuntimeError(
f'Attempted to set {n} devices, but {n_devices} CPUs already available:'
' ensure that `set_n_cpu_devices` is executed before any JAX operation.'
)
xla_flags = os.getenv('XLA_FLAGS', '')
xla_flags = re.sub(_xla_device_count_flag_regexp, '', xla_flags)
os.environ['XLA_FLAGS'] = ' '.join(
[f'--xla_force_host_platform_device_count={n}'] + xla_flags.split())
def convert_to_varargs(sig, *args, **kwargs):
"""Converts varargs+kwargs function arguments into varargs only."""
bound_args = sig.bind(*args, **kwargs)
return bound_args.args
def _ignore_axis_index_groups(fn):
"""Wrapper that forces axis_index_groups to be None.
This is to avoid problems within fake_pmap where parallel operations are
performed with vmap, rather than pmap. Parallel operations where
`axis_index_groups` is not `None` are not currently supported under vmap.
Args:
fn: the function to wrap
Returns:
a wrapped function that forces any keyword argument named
`axis_index_groups` to be None
"""
@functools.wraps(fn)
def _fake(*args, axis_index_groups=None, **kwargs):
del axis_index_groups
return fn(*args, axis_index_groups=None, **kwargs)
return _fake
_fake_all_gather = _ignore_axis_index_groups(jax.lax.all_gather)
_fake_all_to_all = _ignore_axis_index_groups(jax.lax.all_to_all)
_fake_psum = _ignore_axis_index_groups(jax.lax.psum)
_fake_pmean = _ignore_axis_index_groups(jax.lax.pmean)
_fake_pmax = _ignore_axis_index_groups(jax.lax.pmax)
_fake_pmin = _ignore_axis_index_groups(jax.lax.pmin)
_fake_pswapaxes = _ignore_axis_index_groups(jax.lax.pswapaxes)
@functools.wraps(jax.pmap)
def _fake_pmap(fn,
axis_name: Optional[Any] = None,
*,
in_axes=0,
static_broadcasted_argnums: Union[int, Iterable[int]] = (),
jit_result: bool = False,
fake_parallel_axis: bool = False,
**unused_kwargs):
"""Fake implementation of pmap using vmap."""
if isinstance(static_broadcasted_argnums, int):
static_broadcasted_argnums = (static_broadcasted_argnums,)
if static_broadcasted_argnums and isinstance(in_axes, dict):
raise NotImplementedError(
'static_broadcasted_argnums with dict in_axes not supported.')
fn_signature = inspect.signature(
fn,
# Disable 'follow wrapped' because we want the exact signature of fn,
# not the signature of any function it might wrap.
follow_wrapped=False)
@functools.wraps(fn)
def wrapped_fn(*args, **kwargs):
# Convert kwargs to varargs
# This is a workaround for vmapped functions not working with kwargs
call_args = convert_to_varargs(fn_signature, *args, **kwargs)
if static_broadcasted_argnums:
# Make sure vmap does not try to map over `static_broadcasted_argnums`.
if isinstance(in_axes, int):
vmap_in_axes = [in_axes] * len(call_args)
else:
vmap_in_axes = list(in_axes)
for argnum in static_broadcasted_argnums:
vmap_in_axes[argnum] = None
# To protect the arguments from `static_broadcasted_argnums`,
# from turning into tracers (because of vmap), we capture the original
# `call_args` and replace the passed in tracers with original values.
original_call_args = call_args
# A function passed to vmap, that will simply replace the static args
# with their original values.
def fn_without_statics(*args):
args_with_original_statics = [
orig_arg if i in static_broadcasted_argnums else arg
for i, (arg, orig_arg) in enumerate(zip(args, original_call_args))
]
return fn(*args_with_original_statics)
# Make sure to avoid turning static args into tracers: Some python objects
# might not survive vmap. Just replace with an unused constant.
call_args = [
1 if i in static_broadcasted_argnums else arg
for i, arg in enumerate(call_args)
]
else:
vmap_in_axes = in_axes
fn_without_statics = fn
vmapped_fn = jax.vmap(
fn_without_statics, in_axes=vmap_in_axes, axis_name=axis_name
)
if jit_result:
vmapped_fn = jax.jit(vmapped_fn)
if fake_parallel_axis:
call_args = jax.tree_util.tree_map(
lambda x: jnp.expand_dims(x, axis=0), call_args)
output = vmapped_fn(*call_args)
if fake_parallel_axis:
output = jax.tree_util.tree_map(lambda x: jnp.squeeze(x, axis=0), output)
return output
return wrapped_fn
# pylint:disable=unnecessary-dunder-call
class FakeContext(contextlib.ExitStack):
def start(self):
self.__enter__()
def stop(self):
self.__exit__(None, None, None)
# pylint:enable=unnecessary-dunder-call
def fake_jit(enable_patching: bool = True) -> FakeContext:
"""Context manager for patching `jax.jit` with the identity function.
This is intended to be used as a debugging tool to programmatically enable or
disable JIT compilation.
Can be used either as a context managed scope:
.. code-block:: python
with chex.fake_jit():
@jax.jit
def foo(x):
...
or by calling `start` and `stop`:
.. code-block:: python
fake_jit_context = chex.fake_jit()
fake_jit_context.start()
@jax.jit
def foo(x):
...
fake_jit_context.stop()
Args:
enable_patching: Whether to patch `jax.jit`.
Returns:
Context where `jax.jit` is patched with the identity function jax is
configured to avoid jitting internally whenever possible in functions
such as `jax.lax.scan`, etc.
"""
stack = FakeContext()
stack.enter_context(jax.disable_jit(disable=enable_patching))
return stack
def fake_pmap(
enable_patching: bool = True,
jit_result: bool = False,
ignore_axis_index_groups: bool = False,
fake_parallel_axis: bool = False,
) -> FakeContext:
"""Context manager for patching `jax.pmap` with `jax.vmap`.
This is intended to be used as a debugging tool to programmatically replace
pmap transformations with a non-parallel vmap transformation.
Can be used either as a context managed scope:
.. code-block:: python
with chex.fake_pmap():
@jax.pmap
def foo(x):
...
or by calling `start` and `stop`:
.. code-block:: python
fake_pmap_context = chex.fake_pmap()
fake_pmap_context.start()
@jax.pmap
def foo(x):
...
fake_pmap_context.stop()
Args:
enable_patching: Whether to patch `jax.pmap`.
jit_result: Whether the transformed function should be jitted despite not
being pmapped.
ignore_axis_index_groups: Whether to force any parallel operation within the
context to set `axis_index_groups` to be None. This is a compatibility
option to allow users of the axis_index_groups parameter to run under the
fake_pmap context. This feature is not currently supported in vmap, and
will fail, so we force the parameter to be `None`.
*Warning*: This will produce different results to running under `jax.pmap`
fake_parallel_axis: Fake a parallel axis
Returns:
Context where `jax.pmap` is patched with `jax.vmap`.
"""
stack = FakeContext()
if enable_patching:
patched_pmap = functools.partial(
_fake_pmap,
jit_result=jit_result,
fake_parallel_axis=fake_parallel_axis)
stack.enter_context(mock.patch('jax.pmap', patched_pmap))
if ignore_axis_index_groups:
stack.enter_context(mock.patch('jax.lax.all_gather', _fake_all_gather))
stack.enter_context(mock.patch('jax.lax.all_to_all', _fake_all_to_all))
stack.enter_context(mock.patch('jax.lax.psum', _fake_psum))
stack.enter_context(mock.patch('jax.lax.pmean', _fake_pmean))
stack.enter_context(mock.patch('jax.lax.pmax', _fake_pmax))
stack.enter_context(mock.patch('jax.lax.pmin', _fake_pmin))
stack.enter_context(mock.patch('jax.lax.pswapaxes', _fake_pswapaxes))
else:
# Use default implementations
pass
return stack
def fake_pmap_and_jit(enable_pmap_patching: bool = True,
enable_jit_patching: bool = True) -> FakeContext:
"""Context manager for patching `jax.jit` and `jax.pmap`.
This is a convenience function, equivalent to nested `chex.fake_pmap` and
`chex.fake_jit` contexts.
Note that calling (the true implementation of) `jax.pmap` will compile the
function, so faking `jax.jit` in this case will not stop the function from
being compiled.
Args:
enable_pmap_patching: Whether to patch `jax.pmap`.
enable_jit_patching: Whether to patch `jax.jit`.
Returns:
Context where jax.pmap and jax.jit are patched with jax.vmap and the
identity function
"""
stack = FakeContext()
stack.enter_context(fake_pmap(enable_pmap_patching))
stack.enter_context(fake_jit(enable_jit_patching))
return stack
class OnCallOfTransformedFunction():
"""Injects a callback into any transformed function.
A typical use-case is jax.jit or jax.pmap which is often hidden deep inside
the code. This context manager allows to inject a callback function into
functions which are transformed by the user-specified transformation.
The callback will receive the transformed function and its arguments.
The function can be useful to debug, profile and check the calls of any
transformed function in a program
For instance:
with chex.OnCallOfTransformedFunction('jax.jit', print):
[...]
would print all calls to any function which was jit-compiled within this
context.
We can also automatically create profiles on the first call of all the
jit compiled functions in the program:
class profile_once():
def __init__(self):
self._first_call = True
def __call__(self, fn, *args, **kwargs):
if self._first_call:
self._first_call = False
print(profile_from_HLO(fn.lower(*args, **kwargs))
with chex.OnCallOfTransformedFunction('jax.jit', profile_once()):
[...]
"""
def __init__(self, fn_transformation: str, callback_fn: Callable[..., Any]):
"""Creates a new OnCallOfTransformedFunction context manager.
Args:
fn_transformation: identifier of the function transformation e.g.
'jax.jit', 'jax.pmap', ...
callback_fn: A callback function which receives the transformed function
and its arguments on every call.
"""
self._fn_transformation = fn_transformation
self._callback_fn = callback_fn
self._patch: mock._patch[Callable[[Any], Any]] = None # pylint: disable=unsubscriptable-object
self._original_fn_transformation = None
def __enter__(self):
def _new_fn_transformation(fn, *args, **kwargs):
"""Returns a transformed version of the given function."""
transformed_fn = self._original_fn_transformation(fn, *args, **kwargs)
@functools.wraps(transformed_fn)
def _new_transformed_fn(*args, **kwargs):
"""Returns result of the returned function and calls the callback."""
self._callback_fn(transformed_fn, *args, **kwargs)
return transformed_fn(*args, **kwargs)
return _new_transformed_fn
self._patch = mock.patch(self._fn_transformation, _new_fn_transformation)
self._original_fn_transformation, unused_local = self._patch.get_original()
self._patch.start()
def __exit__(self, *unused_args):
self._patch.stop()
|