File size: 20,527 Bytes
a20b7df
 
88aafac
a20b7df
3b3e0c8
9cf392a
 
 
 
 
a20b7df
 
46b912b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e31d3
a6ac76e
00e31d3
a20b7df
fb13f87
a20b7df
a6ac76e
a20b7df
a6ac76e
a20b7df
a6ac76e
 
d9fb779
 
 
 
a6ac76e
d9fb779
a6ac76e
 
 
 
 
 
 
 
 
d9fb779
a20b7df
3b3e0c8
a20b7df
3b3e0c8
a20b7df
3b3e0c8
a20b7df
a6ac76e
88aafac
a6ac76e
88aafac
a6ac76e
 
88aafac
00e31d3
3b3e0c8
a6ac76e
 
 
 
88aafac
3b3e0c8
 
88aafac
46b912b
a20b7df
38f52fd
a20b7df
9cf392a
 
 
 
 
46b912b
a6ac76e
 
 
 
88aafac
9cf392a
38f52fd
9cf392a
 
 
 
 
9180f04
88aafac
a6ac76e
9cf392a
 
 
 
88aafac
9cf392a
 
38f52fd
a20b7df
88aafac
9cf392a
 
a20b7df
46b912b
 
3b3e0c8
00e31d3
38f52fd
a6ac76e
3b3e0c8
a20b7df
 
 
a6ac76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a20b7df
93bbea8
a20b7df
a6ac76e
a20b7df
a6ac76e
00e31d3
a6ac76e
00e31d3
a6ac76e
 
00e31d3
a6ac76e
 
 
 
 
a20b7df
 
a6ac76e
 
 
 
 
38f52fd
 
 
 
a20b7df
a6ac76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88aafac
9730020
a20b7df
46b912b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ac76e
 
 
 
 
 
 
 
 
 
 
 
 
 
46b912b
a20b7df
 
 
 
 
 
a6ac76e
a20b7df
a6ac76e
 
a20b7df
a6ac76e
 
 
 
 
 
 
 
38f52fd
a6ac76e
 
 
 
 
38f52fd
a6ac76e
 
a20b7df
63c2525
a6ac76e
 
 
 
 
88aafac
a6ac76e
 
 
 
a20b7df
a6ac76e
 
 
 
 
 
 
 
3b3e0c8
63c2525
a6ac76e
 
 
 
 
 
 
 
 
 
3b3e0c8
46b912b
a6ac76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b912b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ac76e
 
 
 
 
 
 
 
46b912b
a6ac76e
 
 
46b912b
 
 
 
 
 
a6ac76e
 
 
 
46b912b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ac76e
 
 
 
 
 
a20b7df
 
 
46b912b
 
a20b7df
fb13f87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import gradio as gr
import random
import glob
import os
import requests
from openai import OpenAI
from dotenv import load_dotenv

# 加载环境变量
load_dotenv()

# ========== 默认选项和数据 ==========
EXPRESSIONS = [
    "smiling", "determined", "surprised", "serene", "smug", "thinking", 
    "looking back", "laughing", "angry", "pensive", "confident", 
    "grinning", "thoughtful", "sad tears", "bewildered"
]
ITEMS = [
    "magic wand", "sword", "flower", "book of spells", "earrings", "loincloth", 
    "slippers", "ancient scroll", "music instrument", "shield", "dagger", 
    "headband", "leg ties", "staff", "potion", "crystal ball", "anklet", 
    "ribbon", "lantern", "amulet", "ring"
]
OTHER_DETAILS = [
    "sparkles", "magical aura", "lens flare", "fireworks in the background", 
    "smoke effects", "light trails", "falling leaves", "glowing embers", 
    "floating particles", "rays of light", "shimmering mist", "ethereal glow"
]
SCENES = [
    "sunset beach", "rainy city street at night", "floating ash land", 
    "particles magic world", "high blue sky", "top of the building", 
    "fantasy forest with glowing mushrooms", "futuristic skyline at dawn", 
    "abandoned castle", "snowy mountain peak", "desert ruins", "underwater city", 
    "enchanted meadow", "haunted mansion", "steampunk marketplace", "glacial cavern"
]
CAMERA_ANGLES = [
    "low-angle shot", "close-up shot", "bird's-eye view", "wide-angle shot", 
    "over-the-shoulder shot", "extreme close-up", "panoramic view", 
    "dynamic tracking shot", "fisheye view", "point-of-view shot"
]
QUALITY_PROMPTS = [
    "cinematic lighting", "sharp shadow", "award-winning", "masterpiece", 
    "vivid colors", "high dynamic range", "immersive", "studio quality", 
    "fine art", "dreamlike", "8K", "HD", "high quality", "best quality", 
    "artistic", "vibrant"
]

# Hugging Face DTR 数据集路径(示例,若不可用请忽略)
DTR_DATASET_PATTERN = "https://huggingface.co/datasets/X779/Danbooruwildcards/resolve/main/*DTR*.txt"


# ========== 工具函数 ==========
def load_candidates_from_files(files, excluded_tags=None):
    """
    从多个文件中加载候选项,同时排除用户不想要的标签(精确匹配)。
    """
    if excluded_tags is None:
        excluded_tags = set()
    all_lines = []
    if files:
        for file in files:
            if isinstance(file, str):
                # 说明是路径字符串
                with open(file, "r", encoding="utf-8") as f:
                    lines = [line.strip() for line in f if line.strip()]
                    filtered = [l for l in lines if l not in excluded_tags]
                    all_lines.extend(filtered)
            else:
                # 说明是一个上传的 file-like 对象
                file_data = file.read().decode("utf-8", errors="ignore")
                lines = [line.strip() for line in file_data.splitlines() if line.strip()]
                filtered = [l for l in lines if l not in excluded_tags]
                all_lines.extend(filtered)
    return all_lines

def get_random_items(candidates, num_items=1):
    """
    从候选项中随机选取指定数量的选项。
    """
    return random.sample(candidates, min(num_items, len(candidates))) if candidates else []

def load_dtr_from_huggingface(excluded_tags=None):
    """
    从 Hugging Face 数据集中加载所有包含 "DTR" 的文件内容,同时排除不需要的tag。
    """
    if excluded_tags is None:
        excluded_tags = set()
    try:
        response = requests.get(DTR_DATASET_PATTERN)
        response.raise_for_status()
        lines = response.text.splitlines()
        # 只过滤精确匹配
        lines = [l for l in lines if l not in excluded_tags]
        return lines
    except Exception as e:
        print(f"Error loading DTR dataset: {e}")
        return []

def generate_natural_language_description(tags, api_key=None, base_url=None, model="gpt-4"):
    """
    使用 OpenAI GPT 或 DeepSeek API 生成自然语言描述。
    """
    if not api_key:
        api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        return "Error: No API Key provided and none found in environment variables."

    # 将 dict 转成可读字符串
    tag_descriptions = "\n".join([
        f"{key}: {', '.join(value) if isinstance(value, list) else value}"
        for key, value in tags.items() if value
    ])

    try:
        client = OpenAI(api_key=api_key, base_url=base_url) if base_url else OpenAI(api_key=api_key)
        response = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": (
                        "You are a creative assistant that generates detailed and imaginative scene descriptions for AI generation prompts. "
                        "Focus on the details provided and incorporate them into a cohesive narrative. "
                        "Use at least three sentences but no more than five sentences."
                    ),
                },
                {
                    "role": "user",
                    "content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.",
                },
            ],
            model=model,
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT generation failed. Error: {e}"


# ========== 核心函数:随机生成 prompt ==========
def generate_prompt(
    action_file, style_file, artist_files, character_files, dtr_enabled, api_key, selected_categories,
    expression_count, item_count, detail_count, scene_count, angle_count, quality_count, action_count, style_count,
    artist_count, use_deepseek, deepseek_key, user_custom_tags, excluded_tags
):
    """
    生成随机提示词和描述。
    """
    # 处理排除 Tags(逗号分隔 -> 去重 set)
    excluded_set = set(
        [tag.strip() for tag in excluded_tags.split(",") if tag.strip()]
    ) if excluded_tags else set()

    # 从文件中加载可选 action、style、artist、character
    actions = get_random_items(load_candidates_from_files([action_file], excluded_set) if action_file else [], action_count)
    styles = get_random_items(load_candidates_from_files([style_file], excluded_set) if style_file else [], style_count)
    artists = get_random_items(load_candidates_from_files(artist_files, excluded_set) if artist_files else [], artist_count)
    characters = get_random_items(load_candidates_from_files(character_files, excluded_set) if character_files else [], 1)

    # 处理 DTR
    dtr_candidates = get_random_items(load_dtr_from_huggingface(excluded_set) if dtr_enabled else [], 1)

    # 处理预设列表中的随机筛选
    filtered_expressions = [e for e in EXPRESSIONS if e not in excluded_set]
    filtered_items = [i for i in ITEMS if i not in excluded_set]
    filtered_details = [d for d in OTHER_DETAILS if d not in excluded_set]
    filtered_scenes = [s for s in SCENES if s not in excluded_set]
    filtered_angles = [c for c in CAMERA_ANGLES if c not in excluded_set]
    filtered_quality = [q for q in QUALITY_PROMPTS if q not in excluded_set]

    # 随机抽取
    random_expression = get_random_items(filtered_expressions, expression_count)
    random_items = get_random_items(filtered_items, item_count)
    random_details = get_random_items(filtered_details, detail_count)
    random_scenes = get_random_items(filtered_scenes, scene_count)
    random_angles = get_random_items(filtered_angles, angle_count)
    random_quality = get_random_items(filtered_quality, quality_count)

    number_of_characters = ", ".join(selected_categories) if selected_categories else []

    # 整理为字典
    tags = {
        "number_of_characters": [number_of_characters] if number_of_characters else [],
        "character_name": characters,
        "artist_prompt": [f"(artist:{', '.join(artists)})"] if artists else [],
        "style": styles,
        "scene": random_scenes,
        "camera_angle": random_angles,
        "action": actions,
        "expression": random_expression,
        "items": random_items,
        "other_details": random_details,
        "quality_prompts": random_quality,
        "dtr": dtr_candidates,
    }

    # 如果用户有自定义输入
    if user_custom_tags.strip():
        tags["custom_tags"] = [t.strip() for t in user_custom_tags.split(",") if t.strip()]

    # 生成自然语言描述
    if use_deepseek:
        description = generate_natural_language_description(tags, api_key=deepseek_key, base_url="https://api.deepseek.com", model="deepseek-chat")
    else:
        description = generate_natural_language_description(tags, api_key=api_key)

    # 整理最终 Tags(flatten 并去重)
    tags_list = []
    for v in tags.values():
        if isinstance(v, list):
            tags_list.extend(v)
        else:
            tags_list.append(v)

    # 去重保持顺序
    seen = set()
    final_tags_list = []
    for t in tags_list:
        if t not in seen and t:
            seen.add(t)
            final_tags_list.append(t)

    final_tags = ", ".join(final_tags_list)

    # 默认 Combined = Tags + Description
    combined_output = f"{final_tags}\n\n{description}"
    return final_tags, description, combined_output


# ========== 部分更新:只根据用户修改后的 tags_text 生成新的描述和合并输出 ==========
def update_description(tags_text, api_key, use_deepseek, deepseek_key):
    """
    只根据用户提供的 tags_text 生成描述和合并输出。
    不再重新随机抽取,以免破坏用户手动修改过的 Tags。
    """
    if not api_key and not deepseek_key:
        # 没有提供任意可用 API Key
        return "(No API Key provided)", f"{tags_text}\n\n(No API Key provided)"

    # 构造给 GPT 的 prompt
    user_prompt = (
        "You are a creative assistant that generates detailed, imaginative scene descriptions for AI generation.\n"
        "Below is the user's current tags (prompt elements). "
        "Generate a new descriptive text (3-5 sentences) that incorporates these tags.\n\n"
        f"User Tags: {tags_text}\n"
        "Please generate a vivid, imaginative scene description."
    )

    try:
        if use_deepseek:
            # 调用 DeepSeek
            client = OpenAI(api_key=deepseek_key, base_url="https://api.deepseek.com")
            model = "deepseek-chat"
        else:
            # 调用 OpenAI
            client = OpenAI(api_key=api_key)
            model = "gpt-4"  # 或其他可用模型,比如 "gpt-3.5-turbo"
        response = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": "You are a creative assistant that generates imaginative scene descriptions..."
                },
                {
                    "role": "user",
                    "content": user_prompt,
                },
            ],
            model=model,
        )
        new_description = response.choices[0].message.content.strip()
    except Exception as e:
        new_description = f"(GPT generation failed: {e})"

    new_combined_output = f"{tags_text}\n\n{new_description}"
    return new_description, new_combined_output


# ========== 翻译功能:将 combined_output 翻译成用户选定语言 ==========
def translate_combined_output(combined_text, target_language, api_key, use_deepseek, deepseek_key):
    """
    使用 GPT 或 DeepSeek API,将 combined_text 翻译成 target_language。
    """
    if not api_key and not deepseek_key:
        return "(No API Key provided)"

    # 简单用 GPT 做翻译,也可改成其他翻译 API
    translation_prompt = (
        f"You are a professional translator. Please translate the following text into {target_language}.\n\n"
        f"{combined_text}"
    )

    try:
        if use_deepseek:
            # 调用 DeepSeek
            client = OpenAI(api_key=deepseek_key, base_url="https://api.deepseek.com")
            model = "deepseek-chat"
        else:
            # 调用 OpenAI
            client = OpenAI(api_key=api_key)
            model = "gpt-3.5-turbo"  # 或者别的模型
        response = client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a professional translator."},
                {"role": "user", "content": translation_prompt},
            ],
            model=model,
        )
        translated_text = response.choices[0].message.content.strip()
    except Exception as e:
        translated_text = f"(Translation failed: {e})"

    return translated_text


# ========== 收藏功能:最多存 3 条 ==========
def add_to_favorites(combined_output, current_favorites):
    """
    将当前生成的 combined_output 添加到收藏列表中(最多存 3 条)。
    """
    current_favorites.append(combined_output)
    # 如果超过3条,移除最早的一条
    if len(current_favorites) > 3:
        current_favorites.pop(0)
    # 格式化输出
    favorites_text = "\n\n".join(
        [f"[Favorite {i+1}]\n{fav}" for i, fav in enumerate(current_favorites)]
    )
    return favorites_text, current_favorites


# ========== Gradio 界面 ==========
def gradio_interface():
    """
    定义 Gradio 应用界面。
    """
    with gr.Blocks() as demo:
        gr.Markdown("## Random Prompt Generator with Adjustable Tag Counts (Enhanced)")

        # 用于存储收藏内容的状态(最多缓存3条)
        favorites_state = gr.State([])

        with gr.Row():
            # 左侧:文件上传、参数选择、排除/自定义输入
            with gr.Column(scale=1):
                api_key_input = gr.Textbox(
                    label="OpenAI API Key (可选)",
                    placeholder="sk-...",
                    type="password"
                )

                deepseek_key_input = gr.Textbox(
                    label="DeepSeek API Key (可选)",
                    placeholder="sk-...",
                    type="password"
                )

                use_deepseek = gr.Checkbox(label="Use DeepSeek API")
                dtr_enabled = gr.Checkbox(label="Enable DTR (如不可用请勿勾选)")

                with gr.Group():
                    gr.Markdown("**上传文件 (可选):**")
                    action_file = gr.File(label="Action File", file_types=[".txt"])
                    style_file = gr.File(label="Style File", file_types=[".txt"])
                    artist_files = gr.Files(label="Artist Files", file_types=[".txt"])
                    character_files = gr.Files(label="Character Files", file_types=[".txt"])

                selected_categories = gr.CheckboxGroup(
                    ["1boy", "1girl", "furry", "mecha", "fantasy monster", "animal", "still life"],
                    label="Choose Character Categories"
                )

                excluded_tags = gr.Textbox(
                    label="排除 Tags (逗号分隔)",
                    placeholder="如:angry, sword"
                )
                user_custom_tags = gr.Textbox(
                    label="自定义附加 Tags (逗号分隔)",
                    placeholder="如:glowing eyes, giant wings"
                )

                with gr.Group():
                    gr.Markdown("**随机数量设置:**")
                    expression_count = gr.Slider(label="Number of Expressions", minimum=0, maximum=10, step=1, value=1)
                    item_count = gr.Slider(label="Number of Items", minimum=0, maximum=10, step=1, value=1)
                    detail_count = gr.Slider(label="Number of Other Details", minimum=0, maximum=10, step=1, value=1)
                    scene_count = gr.Slider(label="Number of Scenes", minimum=0, maximum=10, step=1, value=1)
                    angle_count = gr.Slider(label="Number of Camera Angles", minimum=0, maximum=10, step=1, value=1)
                    quality_count = gr.Slider(label="Number of Quality Prompts", minimum=0, maximum=10, step=1, value=1)
                    action_count = gr.Slider(label="Number of Actions", minimum=1, maximum=10, step=1, value=1)
                    style_count = gr.Slider(label="Number of Styles", minimum=1, maximum=10, step=1, value=1)
                    artist_count = gr.Slider(label="Number of Artists", minimum=1, maximum=10, step=1, value=1)

            # 右侧:生成按钮 + 生成结果 + 收藏 + 翻译
            with gr.Column(scale=2):
                generate_button = gr.Button("Generate Prompt", variant="primary")

                tags_output = gr.Textbox(
                    label="Generated Tags",
                    placeholder="等待生成...",
                    lines=4,
                    interactive=True
                )
                description_output = gr.Textbox(
                    label="Generated Description",
                    placeholder="等待生成...",
                    lines=4,
                    interactive=True
                )
                combined_output = gr.Textbox(
                    label="Combined Output: Tags + Description",
                    placeholder="等待生成...",
                    lines=6
                )

                # 新增一个按钮,只更新 description 和 combined
                update_desc_button = gr.Button("Update Description Only")

                # 翻译相关
                with gr.Row():
                    target_language = gr.Dropdown(
                        choices=["English", "Chinese", "Japanese"],
                        value="English",
                        label="Target Language"
                    )
                    translate_button = gr.Button("Translate to selected language")
                translated_output = gr.Textbox(
                    label="Translated Output",
                    placeholder="等待翻译...",
                    lines=6
                )

                # 收藏
                with gr.Row():
                    favorite_button = gr.Button("收藏本次结果")
                    favorites_box = gr.Textbox(
                        label="收藏夹 (最多 3 条)",
                        placeholder="暂无收藏",
                        lines=6
                    )

                # 点击“Generate Prompt”按钮
                generate_button.click(
                    generate_prompt,
                    inputs=[
                        action_file, style_file, artist_files, character_files, 
                        dtr_enabled, api_key_input, selected_categories,
                        expression_count, item_count, detail_count, scene_count, 
                        angle_count, quality_count, action_count, style_count,
                        artist_count, use_deepseek, deepseek_key_input, 
                        user_custom_tags, excluded_tags
                    ],
                    outputs=[tags_output, description_output, combined_output],
                )

                # 点击“Update Description Only”按钮
                update_desc_button.click(
                    update_description,
                    inputs=[
                        tags_output,     # 用户在文本框里编辑后的 Tags
                        api_key_input, 
                        use_deepseek,
                        deepseek_key_input,
                    ],
                    outputs=[description_output, combined_output],
                )

                # 点击“Translate to selected language”按钮
                translate_button.click(
                    fn=translate_combined_output,
                    inputs=[
                        combined_output,   # 要翻译的源文本
                        target_language,
                        api_key_input,
                        use_deepseek,
                        deepseek_key_input
                    ],
                    outputs=[translated_output],
                )

                # 收藏按钮点击事件
                favorite_button.click(
                    fn=add_to_favorites,
                    inputs=[combined_output, favorites_state],
                    outputs=[favorites_box, favorites_state],
                )

    return demo


# 启动 Gradio 应用
if __name__ == "__main__":
    gradio_interface().launch()