Spaces:
Running
Running
File size: 8,483 Bytes
a20b7df 88aafac a20b7df 3b3e0c8 9cf392a a20b7df 00e31d3 a20b7df d9fb779 a20b7df d9fb779 a20b7df d9fb779 a20b7df 3b3e0c8 a20b7df 3b3e0c8 a20b7df 3b3e0c8 a20b7df 00e31d3 88aafac 00e31d3 88aafac 00e31d3 3b3e0c8 88aafac 3b3e0c8 88aafac a20b7df 88aafac a20b7df 9cf392a 88aafac 9cf392a 88aafac 9cf392a 88aafac 9cf392a a20a39a a20b7df 88aafac 9cf392a a20b7df 3b3e0c8 00e31d3 3b3e0c8 a20b7df 00e31d3 a20b7df 00e31d3 3b3e0c8 00e31d3 3b3e0c8 00e31d3 a20b7df 3b3e0c8 88aafac 9730020 a20b7df 3b3e0c8 a20b7df 88aafac a20b7df 88aafac d9fb779 e8a0f4d a20b7df 00e31d3 88aafac a20b7df 3b3e0c8 00e31d3 3b3e0c8 a20b7df 9730020 a20b7df 88aafac 00e31d3 88aafac 9730020 a20b7df e8a0f4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
import random
import glob
import os
import requests
from openai import OpenAI
from dotenv import load_dotenv
# 加载环境变量
load_dotenv()
# ========== 默认选项和数据 ==========
EXPRESSIONS = ["smiling", "determined", "surprised", "serene", "laughing", "angry", "pensive", "confident"]
ITEMS = ["magic wand", "sword", "flower", "book of spells", "ancient scroll", "music instrument", "shield", "dagger", "staff", "potion"]
OTHER_DETAILS = ["sparkles", "magical aura", "lens flare", "fireworks in the background", "smoke effects", "light trails", "falling leaves", "glowing embers"]
SCENES = ["sunset beach", "rainy city street at night", "fantasy forest with glowing mushrooms", "futuristic skyline at dawn", "abandoned castle", "snowy mountain peak", "desert ruins", "underwater city"]
CAMERA_ANGLES = ["low-angle shot", "close-up shot", "bird's-eye view", "wide-angle shot", "over-the-shoulder shot", "extreme close-up", "panoramic view", "dynamic tracking shot"]
QUALITY_PROMPTS = ["cinematic lighting", "award-winning", "masterpiece", "vivid colors", "high dynamic range", "immersive", "studio quality", "fine art", "dreamlike", "8K", "HD", "high quality", "best quality"]
# Hugging Face DTR 数据集路径
DTR_DATASET_PATTERN = "https://huggingface.co/datasets/X779/Danbooruwildcards/resolve/main/*DTR*.txt"
# ========== 工具函数 ==========
def load_candidates_from_files(files):
"""
从多个文件中加载候选项。
"""
all_lines = []
if files:
for file in files:
if isinstance(file, str):
with open(file, "r", encoding="utf-8") as f:
all_lines.extend([line.strip() for line in f if line.strip()])
return all_lines
def get_random_items(candidates, num_items=1):
"""
从候选项中随机选取指定数量的选项。
"""
return random.sample(candidates, min(num_items, len(candidates))) if candidates else []
def load_dtr_from_huggingface():
"""
从 Hugging Face 数据集中加载所有包含 "DTR" 的文件内容。
"""
try:
response = requests.get(DTR_DATASET_PATTERN)
response.raise_for_status()
return response.text.splitlines()
except Exception as e:
print(f"Error loading DTR dataset: {e}")
return []
def generate_natural_language_description(tags, api_key=None):
"""
使用 OpenAI GPT 生成自然语言描述。
"""
if not api_key:
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
return "Error: No API Key provided and none found in environment variables."
tag_descriptions = "\n".join([f"{key}: {value}" for key, value in tags.items() if value])
try:
client = OpenAI(api_key=api_key)
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": (
"You are a creative assistant that generates vivid and imaginative scene descriptions for painting prompts. "
"Focus on the details provided and incorporate them into a cohesive narrative. "
"Use at least three sentences."
),
},
{
"role": "user",
"content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.",
},
],
model="gpt-4o",
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"GPT generation failed. Error: {e}"
def generate_prompt(
action_file, style_file, artist_files, character_files, dtr_enabled, api_key, selected_categories,
expression_count, item_count, detail_count, scene_count, angle_count, quality_count, action_count, style_count
):
"""
生成随机提示词和描述。
"""
actions = get_random_items(load_candidates_from_files([action_file]) if action_file else [], action_count)
styles = get_random_items(load_candidates_from_files([style_file]) if style_file else [], style_count)
artists = get_random_items(load_candidates_from_files(artist_files) if artist_files else [], 1)
characters = get_random_items(load_candidates_from_files(character_files) if character_files else [], 1)
dtr_candidates = get_random_items(load_dtr_from_huggingface() if dtr_enabled else [], 1)
number_of_characters = ", ".join(selected_categories) if selected_categories else random.choice(["1girl", "1boy"])
tags = {
"number_of_characters": number_of_characters,
"character_name": characters,
"artist_prompt": f"(artist:{artists})",
"style": styles,
"scene": get_random_items(SCENES, scene_count),
"camera_angle": get_random_items(CAMERA_ANGLES, angle_count),
"action": actions,
"expression": get_random_items(EXPRESSIONS, expression_count),
"items": get_random_items(ITEMS, item_count),
"other_details": get_random_items(OTHER_DETAILS, detail_count),
"quality_prompts": get_random_items(QUALITY_PROMPTS, quality_count),
"dtr": dtr_candidates
}
description = generate_natural_language_description(tags, api_key)
tags_list = [item for sublist in tags.values() for item in (sublist if isinstance(sublist, list) else [sublist])] # Flatten
unique_tags = list(dict.fromkeys(tags_list))
final_tags = ", ".join(unique_tags)
combined_output = f"{final_tags}\n\n{description}"
return final_tags, description, combined_output
# ========== Gradio 界面 ==========
def gradio_interface():
"""
定义 Gradio 应用界面。
"""
with gr.Blocks() as demo:
gr.Markdown("## Random Prompt Generator with Adjustable Tag Counts")
api_key_input = gr.Textbox(
label="Enter your OpenAI API Key (Optional)",
placeholder="sk-...",
type="password"
)
with gr.Row():
action_file = gr.File(label="Upload Action File (Optional)", file_types=[".txt"])
style_file = gr.File(label="Upload Style File (Optional)", file_types=[".txt"])
with gr.Row():
artist_files = gr.Files(label="Upload Artist Files (Multiple Allowed)", file_types=[".txt"])
character_files = gr.Files(label="Upload Character Files (Multiple Allowed)", file_types=[".txt"])
dtr_enabled = gr.Checkbox(label="Enable DTR")
selected_categories = gr.CheckboxGroup(
["1boy", "1girl", "furry", "mecha", "fantasy monster", "animal", "still life"],
label="Choose Character Categories (Optional)"
)
with gr.Row():
expression_count = gr.Slider(label="Number of Expressions", minimum=1, maximum=5, step=1, value=1)
item_count = gr.Slider(label="Number of Items", minimum=1, maximum=5, step=1, value=1)
detail_count = gr.Slider(label="Number of Other Details", minimum=1, maximum=5, step=1, value=1)
scene_count = gr.Slider(label="Number of Scenes", minimum=1, maximum=5, step=1, value=1)
with gr.Row():
angle_count = gr.Slider(label="Number of Camera Angles", minimum=1, maximum=5, step=1, value=1)
quality_count = gr.Slider(label="Number of Quality Prompts", minimum=1, maximum=5, step=1, value=1)
action_count = gr.Slider(label="Number of Actions", minimum=1, maximum=5, step=1, value=1)
style_count = gr.Slider(label="Number of Styles", minimum=1, maximum=5, step=1, value=1)
with gr.Row():
tags_output = gr.Textbox(label="Generated Tags")
description_output = gr.Textbox(label="Generated Description")
combined_output = gr.Textbox(label="Combined Output: Tags + Description")
generate_button = gr.Button("Generate Prompt")
generate_button.click(
generate_prompt,
inputs=[
action_file, style_file, artist_files, character_files, dtr_enabled, api_key_input, selected_categories,
expression_count, item_count, detail_count, scene_count, angle_count, quality_count, action_count, style_count
],
outputs=[tags_output, description_output, combined_output],
)
return demo
# 启动 Gradio 应用
if __name__ == "__main__":
gradio_interface().launch(share=True) |