File size: 8,483 Bytes
a20b7df
 
88aafac
a20b7df
3b3e0c8
9cf392a
 
 
 
 
a20b7df
 
00e31d3
 
 
 
 
 
 
 
 
a20b7df
 
d9fb779
a20b7df
d9fb779
a20b7df
d9fb779
 
 
 
 
 
 
a20b7df
3b3e0c8
a20b7df
3b3e0c8
a20b7df
3b3e0c8
a20b7df
00e31d3
88aafac
00e31d3
88aafac
 
00e31d3
3b3e0c8
 
88aafac
3b3e0c8
 
88aafac
a20b7df
 
88aafac
a20b7df
9cf392a
 
 
 
 
88aafac
 
9cf392a
 
 
 
 
 
 
 
88aafac
 
 
9cf392a
 
 
 
88aafac
9cf392a
 
a20a39a
a20b7df
88aafac
9cf392a
 
a20b7df
3b3e0c8
00e31d3
 
3b3e0c8
a20b7df
 
 
00e31d3
 
 
 
 
a20b7df
 
 
 
 
00e31d3
 
 
3b3e0c8
 
00e31d3
3b3e0c8
 
 
 
00e31d3
a20b7df
 
 
 
3b3e0c8
88aafac
 
 
9730020
a20b7df
 
 
 
 
 
 
3b3e0c8
a20b7df
 
88aafac
a20b7df
 
 
 
 
 
 
88aafac
d9fb779
e8a0f4d
 
a20b7df
00e31d3
88aafac
a20b7df
 
 
 
 
3b3e0c8
 
 
 
 
 
 
 
 
00e31d3
 
3b3e0c8
a20b7df
 
 
9730020
a20b7df
 
 
 
 
88aafac
00e31d3
 
88aafac
9730020
a20b7df
 
 
 
 
 
e8a0f4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import random
import glob
import os
import requests
from openai import OpenAI
from dotenv import load_dotenv

# 加载环境变量
load_dotenv()

# ========== 默认选项和数据 ==========
EXPRESSIONS = ["smiling", "determined", "surprised", "serene", "laughing", "angry", "pensive", "confident"]
ITEMS = ["magic wand", "sword", "flower", "book of spells", "ancient scroll", "music instrument", "shield", "dagger", "staff", "potion"]
OTHER_DETAILS = ["sparkles", "magical aura", "lens flare", "fireworks in the background", "smoke effects", "light trails", "falling leaves", "glowing embers"]
SCENES = ["sunset beach", "rainy city street at night", "fantasy forest with glowing mushrooms", "futuristic skyline at dawn", "abandoned castle", "snowy mountain peak", "desert ruins", "underwater city"]
CAMERA_ANGLES = ["low-angle shot", "close-up shot", "bird's-eye view", "wide-angle shot", "over-the-shoulder shot", "extreme close-up", "panoramic view", "dynamic tracking shot"]
QUALITY_PROMPTS = ["cinematic lighting", "award-winning", "masterpiece", "vivid colors", "high dynamic range", "immersive", "studio quality", "fine art", "dreamlike", "8K", "HD", "high quality", "best quality"]

# Hugging Face DTR 数据集路径
DTR_DATASET_PATTERN = "https://huggingface.co/datasets/X779/Danbooruwildcards/resolve/main/*DTR*.txt"

# ========== 工具函数 ==========
def load_candidates_from_files(files):
    """
    从多个文件中加载候选项。
    """
    all_lines = []
    if files:
        for file in files:
            if isinstance(file, str):
                with open(file, "r", encoding="utf-8") as f:
                    all_lines.extend([line.strip() for line in f if line.strip()])
    return all_lines

def get_random_items(candidates, num_items=1):
    """
    从候选项中随机选取指定数量的选项。
    """
    return random.sample(candidates, min(num_items, len(candidates))) if candidates else []

def load_dtr_from_huggingface():
    """
    从 Hugging Face 数据集中加载所有包含 "DTR" 的文件内容。
    """
    try:
        response = requests.get(DTR_DATASET_PATTERN)
        response.raise_for_status()
        return response.text.splitlines()
    except Exception as e:
        print(f"Error loading DTR dataset: {e}")
        return []

def generate_natural_language_description(tags, api_key=None):
    """
    使用 OpenAI GPT 生成自然语言描述。
    """
    if not api_key:
        api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        return "Error: No API Key provided and none found in environment variables."

    tag_descriptions = "\n".join([f"{key}: {value}" for key, value in tags.items() if value])

    try:
        client = OpenAI(api_key=api_key)

        response = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": (
                        "You are a creative assistant that generates vivid and imaginative scene descriptions for painting prompts. "
                        "Focus on the details provided and incorporate them into a cohesive narrative. "
                        "Use at least three sentences."
                    ),
                },
                {
                    "role": "user",
                    "content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.",
                },
            ],
            model="gpt-4o",
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT generation failed. Error: {e}"

def generate_prompt(
    action_file, style_file, artist_files, character_files, dtr_enabled, api_key, selected_categories,
    expression_count, item_count, detail_count, scene_count, angle_count, quality_count, action_count, style_count
):
    """
    生成随机提示词和描述。
    """
    actions = get_random_items(load_candidates_from_files([action_file]) if action_file else [], action_count)
    styles = get_random_items(load_candidates_from_files([style_file]) if style_file else [], style_count)
    artists = get_random_items(load_candidates_from_files(artist_files) if artist_files else [], 1)
    characters = get_random_items(load_candidates_from_files(character_files) if character_files else [], 1)
    dtr_candidates = get_random_items(load_dtr_from_huggingface() if dtr_enabled else [], 1)

    number_of_characters = ", ".join(selected_categories) if selected_categories else random.choice(["1girl", "1boy"])

    tags = {
        "number_of_characters": number_of_characters,
        "character_name": characters,
        "artist_prompt": f"(artist:{artists})",
        "style": styles,
        "scene": get_random_items(SCENES, scene_count),
        "camera_angle": get_random_items(CAMERA_ANGLES, angle_count),
        "action": actions,
        "expression": get_random_items(EXPRESSIONS, expression_count),
        "items": get_random_items(ITEMS, item_count),
        "other_details": get_random_items(OTHER_DETAILS, detail_count),
        "quality_prompts": get_random_items(QUALITY_PROMPTS, quality_count),
        "dtr": dtr_candidates
    }

    description = generate_natural_language_description(tags, api_key)

    tags_list = [item for sublist in tags.values() for item in (sublist if isinstance(sublist, list) else [sublist])]  # Flatten
    unique_tags = list(dict.fromkeys(tags_list))
    final_tags = ", ".join(unique_tags)
    combined_output = f"{final_tags}\n\n{description}"
    return final_tags, description, combined_output

# ========== Gradio 界面 ==========
def gradio_interface():
    """
    定义 Gradio 应用界面。
    """
    with gr.Blocks() as demo:
        gr.Markdown("## Random Prompt Generator with Adjustable Tag Counts")

        api_key_input = gr.Textbox(
            label="Enter your OpenAI API Key (Optional)",
            placeholder="sk-...",
            type="password"
        )

        with gr.Row():
            action_file = gr.File(label="Upload Action File (Optional)", file_types=[".txt"])
            style_file = gr.File(label="Upload Style File (Optional)", file_types=[".txt"])

        with gr.Row():
            artist_files = gr.Files(label="Upload Artist Files (Multiple Allowed)", file_types=[".txt"])
            character_files = gr.Files(label="Upload Character Files (Multiple Allowed)", file_types=[".txt"])

        dtr_enabled = gr.Checkbox(label="Enable DTR")

        selected_categories = gr.CheckboxGroup(
            ["1boy", "1girl", "furry", "mecha", "fantasy monster", "animal", "still life"],
            label="Choose Character Categories (Optional)"
        )

        with gr.Row():
            expression_count = gr.Slider(label="Number of Expressions", minimum=1, maximum=5, step=1, value=1)
            item_count = gr.Slider(label="Number of Items", minimum=1, maximum=5, step=1, value=1)
            detail_count = gr.Slider(label="Number of Other Details", minimum=1, maximum=5, step=1, value=1)
            scene_count = gr.Slider(label="Number of Scenes", minimum=1, maximum=5, step=1, value=1)

        with gr.Row():
            angle_count = gr.Slider(label="Number of Camera Angles", minimum=1, maximum=5, step=1, value=1)
            quality_count = gr.Slider(label="Number of Quality Prompts", minimum=1, maximum=5, step=1, value=1)
            action_count = gr.Slider(label="Number of Actions", minimum=1, maximum=5, step=1, value=1)
            style_count = gr.Slider(label="Number of Styles", minimum=1, maximum=5, step=1, value=1)

        with gr.Row():
            tags_output = gr.Textbox(label="Generated Tags")
            description_output = gr.Textbox(label="Generated Description")
            combined_output = gr.Textbox(label="Combined Output: Tags + Description")

        generate_button = gr.Button("Generate Prompt")

        generate_button.click(
            generate_prompt,
            inputs=[
                action_file, style_file, artist_files, character_files, dtr_enabled, api_key_input, selected_categories,
                expression_count, item_count, detail_count, scene_count, angle_count, quality_count, action_count, style_count
            ],
            outputs=[tags_output, description_output, combined_output],
        )

    return demo

# 启动 Gradio 应用
if __name__ == "__main__":
    gradio_interface().launch(share=True)