Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration | |
| from PIL import Image | |
| import numpy as np | |
| import openai # GPT API 调用 | |
| # 初始化模型 | |
| clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
| # GPT API 配置 | |
| openai.api_key = "your_openai_api_key" | |
| # 定义功能函数 | |
| def analyze_images(image_a, image_b): | |
| # BLIP生成描述 | |
| def generate_caption(image): | |
| inputs = blip_processor(image, return_tensors="pt") | |
| caption = blip_model.generate(**inputs) | |
| return blip_processor.decode(caption[0], skip_special_tokens=True) | |
| # CLIP特征提取 | |
| def extract_features(image): | |
| inputs = clip_processor(images=image, return_tensors="pt") | |
| features = clip_model.get_image_features(**inputs) | |
| return features.detach().numpy() | |
| # 加载图片 | |
| img_a = Image.open(image_a).convert("RGB") | |
| img_b = Image.open(image_b).convert("RGB") | |
| # 生成描述 | |
| caption_a = generate_caption(img_a) | |
| caption_b = generate_caption(img_b) | |
| # 提取特征 | |
| features_a = extract_features(img_a) | |
| features_b = extract_features(img_b) | |
| # 计算嵌入相似性 | |
| cosine_similarity = np.dot(features_a, features_b.T) / (np.linalg.norm(features_a) * np.linalg.norm(features_b)) | |
| latent_diff = np.abs(features_a - features_b).tolist() | |
| # GPT API 调用生成文字描述 | |
| gpt_prompt = ( | |
| f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n" | |
| "请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。" | |
| ) | |
| gpt_response = openai.Completion.create( | |
| engine="text-davinci-003", | |
| prompt=gpt_prompt, | |
| max_tokens=150 | |
| ) | |
| textual_analysis = gpt_response['choices'][0]['text'].strip() | |
| # 返回结果 | |
| return { | |
| "caption_a": caption_a, | |
| "caption_b": caption_b, | |
| "similarity": cosine_similarity[0][0], | |
| "latent_diff": latent_diff, | |
| "text_analysis": textual_analysis | |
| } | |
| # 定义Gradio界面 | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 图片对比分析工具") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_a = gr.Image(label="图片A", type="file") | |
| with gr.Column(): | |
| image_b = gr.Image(label="图片B", type="file") | |
| analyze_button = gr.Button("分析图片") | |
| result_caption_a = gr.Textbox(label="图片A描述", interactive=False) | |
| result_caption_b = gr.Textbox(label="图片B描述", interactive=False) | |
| result_similarity = gr.Number(label="图片相似性", interactive=False) | |
| result_latent_diff = gr.DataFrame(label="潜在特征差异", interactive=False) | |
| result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5) | |
| # 分析逻辑 | |
| def process_analysis(img_a, img_b): | |
| results = analyze_images(img_a, img_b) | |
| return results["caption_a"], results["caption_b"], results["similarity"], results["latent_diff"], results["text_analysis"] | |
| analyze_button.click( | |
| fn=process_analysis, | |
| inputs=[image_a, image_b], | |
| outputs=[result_caption_a, result_caption_b, result_similarity, result_latent_diff, result_text_analysis] | |
| ) | |
| demo.launch() | |