File size: 6,584 Bytes
96db9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import os
from PIL import Image, ImageChops, ImageFilter
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
import torch
import matplotlib.pyplot as plt

# 初始化模型
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")

# 图像处理函数
def compute_difference_images(img_a, img_b):
    def extract_sketch(image):
        grayscale = image.convert("L")
        inverted = ImageChops.invert(grayscale)
        sketch = ImageChops.screen(grayscale, inverted)
        return sketch
    
    def compute_normal_map(image):
        edges = image.filter(ImageFilter.FIND_EDGES)
        return edges

    diff_overlay = ImageChops.difference(img_a, img_b)
    return {
        "original_a": img_a,
        "original_b": img_b,
        "sketch_a": extract_sketch(img_a),
        "sketch_b": extract_sketch(img_b),
        "normal_a": compute_normal_map(img_a),
        "normal_b": compute_normal_map(img_b),
        "diff_overlay": diff_overlay
    }

# 保存图像到文件
def save_images(images):
    paths = []
    for key, img in images.items():
        path = f"{key}.png"
        img.save(path)
        paths.append((path, key.replace("_", " ").capitalize()))
    return paths

# BLIP生成更详尽描述
def generate_detailed_caption(image):
    inputs = blip_processor(image, return_tensors="pt")
    caption = blip_model.generate(**inputs, max_length=128, num_beams=5, no_repeat_ngram_size=2)
    return blip_processor.decode(caption[0], skip_special_tokens=True)

# 特征差异可视化
def plot_feature_differences(latent_diff):
    diff_magnitude = [abs(x) for x in latent_diff[0]]
    indices = range(len(diff_magnitude))

    plt.figure(figsize=(8, 4))
    plt.bar(indices, diff_magnitude, alpha=0.7)
    plt.xlabel("Feature Index")
    plt.ylabel("Magnitude of Difference")
    plt.title("Feature Differences (Bar Chart)")
    bar_chart_path = "bar_chart.png"
    plt.savefig(bar_chart_path)
    plt.close()

    plt.figure(figsize=(6, 6))
    plt.pie(diff_magnitude[:10], labels=range(10), autopct="%1.1f%%", startangle=140)
    plt.title("Top 10 Feature Differences (Pie Chart)")
    pie_chart_path = "pie_chart.png"
    plt.savefig(pie_chart_path)
    plt.close()

    return bar_chart_path, pie_chart_path

# 生成详细分析
def generate_text_analysis(api_key, api_type, caption_a, caption_b):
    import openai

    if api_type == "DeepSeek":
        from openai import OpenAI
        client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
    else:
        client = openai

    response = client.ChatCompletion.create(
        model="gpt-4" if api_type == "GPT" else "deepseek-chat",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
        ]
    )
    return response['choices'][0]['message']['content'].strip()

# 分析函数
def analyze_images(img_a, img_b, api_key, api_type):
    images_diff = compute_difference_images(img_a, img_b)
    saved_images = save_images(images_diff)

    caption_a = generate_detailed_caption(img_a)
    caption_b = generate_detailed_caption(img_b)

    inputs = clip_processor(images=img_a, return_tensors="pt")
    features_a = clip_model.get_image_features(**inputs).detach().numpy()

    inputs = clip_processor(images=img_b, return_tensors="pt")
    features_b = clip_model.get_image_features(**inputs).detach().numpy()

    latent_diff = np.abs(features_a - features_b).tolist()

    bar_chart, pie_chart = plot_feature_differences(latent_diff)
    text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)

    return {
        "saved_images": saved_images,
        "caption_a": caption_a,
        "caption_b": caption_b,
        "text_analysis": text_analysis,
        "bar_chart": bar_chart,
        "pie_chart": pie_chart
    }

# 批量分析
def batch_analyze(folder_a, folder_b, api_key, api_type):
    def load_images(folder_path):
        files = sorted([os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
        return [Image.open(f).convert("RGB") for f in files]

    images_a = load_images(folder_a)
    images_b = load_images(folder_b)
    num_pairs = min(len(images_a), len(images_b))

    results = []
    for i in range(num_pairs):
        result = analyze_images(images_a[i], images_b[i], api_key, api_type)
        results.append({
            "pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
            **result
        })
    return results

# Gradio界面
with gr.Blocks() as demo:
    gr.Markdown("# 批量图像对比分析工具")

    api_key_input = gr.Textbox(label="API Key", placeholder="输入您的 API Key", type="password")
    api_type_input = gr.Dropdown(label="API 类型", choices=["GPT", "DeepSeek"], value="GPT")
    folder_a_input = gr.Textbox(label="文件夹A路径", placeholder="输入包含图片A的文件夹路径")
    folder_b_input = gr.Textbox(label="文件夹B路径", placeholder="输入包含图片B的文件夹路径")
    analyze_button = gr.Button("开始批量分析")

    with gr.Row():
        result_gallery = gr.Gallery(label="差异图像").style(grid=3)
    result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)

    def process_batch_analysis(folder_a, folder_b, api_key, api_type):
        results = batch_analyze(folder_a, folder_b, api_key, api_type)
        all_images = []
        all_texts = []

        for result in results:
            all_images.extend(result["saved_images"])
            all_images.append((result["bar_chart"], "Bar Chart"))
            all_images.append((result["pie_chart"], "Pie Chart"))
            all_texts.append(f"{result['pair'][0]} vs {result['pair'][1]}:\n{result['text_analysis']}")

        return all_images, "\n\n".join(all_texts)

    analyze_button.click(
        fn=process_batch_analysis,
        inputs=[folder_a_input, folder_b_input, api_key_input, api_type_input],
        outputs=[result_gallery, result_text_analysis]
    )

demo.launch()