File size: 849 Bytes
30f5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from transformers import ViltProcessor, ViltForVisualQuestionAnswering
import torch

processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForVisualQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")

def answer_question(image, text):
    encoding = processor(image, text, return_tensors="pt")
    
    # forward pass
    with torch.no_grad():
     outputs = model(**encoding)
     
   logits = outputs.logits
   idx = logits.argmax(-1).item()
   predicted_answer = model.config.id2label[idx])
   
   return predicted_answer
   
image = gr.inputs.Image(type="pil")
question = gr.inputs.Textbox(label="Question")
answer = gr.outputs.Textbox(label="Predicted answer")
gr.Interface(fn=classify_image, inputs=[image, question], outputs=answer, enable_queue=True).launch(debug=True)