Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from dotenv import load_dotenv | |
import tempfile | |
# Show title and description. | |
st.title("π Document question answering") | |
st.write( | |
"Upload a document below and ask a question about it β Groq will answer! " | |
"To use this app, you need to provide an Groq API key, which you can get [here](https://console.groq.com/keys). " | |
) | |
# Ask user for their Groq API key via `st.text_input`. | |
# Alternatively, you can store the API key in `./.streamlit/secrets.toml` and access it | |
# via `st.secrets`, see https://docs.streamlit.io/develop/concepts/connections/secrets-management | |
# Define model options | |
model_options = [ | |
"llama3-8b-8192", | |
"llama3-70b-8192", | |
"llama-3.1-8b-instant", | |
"llama-3.1-70b-versatile", | |
"llama-3.2-1b-preview", | |
"llama-3.2-3b-preview", | |
"llama-3.2-11b-text-preview", | |
"llama-3.2-90b-text-preview", | |
"mixtral-8x7b-32768", | |
"gemma-7b-it", | |
"gemma2-9b-it" | |
] | |
# Sidebar elements | |
with st.sidebar: | |
selected_model = st.selectbox("Select any Groq Model", model_options) | |
groq_api_key = st.text_input("Groq API Key", type="password") | |
if not groq_api_key: | |
st.info("Please add your Groq API key to continue.", icon="ποΈ") | |
else: | |
# Create an Groq client. | |
llm = ChatGroq(groq_api_key=groq_api_key, model_name=selected_model) | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the questions based on the provided context only. | |
Please provide the most accurate response based on the question. | |
<context> | |
{context} | |
<context> | |
Questions: {input} | |
""" | |
) | |
def create_vector_db_out_of_the_uploaded_pdf_file(pdf_file): | |
if "vector_store" not in st.session_state: | |
with tempfile.NamedTemporaryFile(delete=False) as temp_file: | |
temp_file.write(pdf_file.read()) | |
pdf_file_path = temp_file.name | |
st.session_state.embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-small-en-v1.5', model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
st.session_state.loader = PyPDFLoader(pdf_file_path) | |
st.session_state.text_document_from_pdf = st.session_state.loader.load() | |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
st.session_state.final_document_chunks = st.session_state.text_splitter.split_documents(st.session_state.text_document_from_pdf) | |
st.session_state.vector_store = FAISS.from_documents(st.session_state.final_document_chunks, st.session_state.embeddings) | |
pdf_input_from_user = st.file_uploader("Upload the PDF file", type=['pdf']) | |
if pdf_input_from_user is not None: | |
if st.button("Create the Vector DB from the uploaded PDF file"): | |
if pdf_input_from_user is not None: | |
create_vector_db_out_of_the_uploaded_pdf_file(pdf_input_from_user) | |
st.success("Vector Store DB for this PDF file Is Ready") | |
else: | |
st.write("Please upload a PDF file first") | |
# Main section for question input and results | |
if "vector_store" in st.session_state: | |
user_prompt = st.text_input("Enter Your Question related to the uploaded PDF") | |
if st.button('Submit Prompt'): | |
if user_prompt: | |
if "vector_store" in st.session_state: | |
document_chain = create_stuff_documents_chain(llm, prompt) | |
retriever = st.session_state.vector_store.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
response = retrieval_chain.invoke({'input': user_prompt}) | |
st.write(response['answer']) | |
else: | |
st.write("Please embed the document first by uploading a PDF file.") | |
else: | |
st.error('Please write your prompt') |