import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model, model_hyperlink from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results def calc_average(row: pd.Series, benchmark_cols: list) -> float: """Calculates the average of the benchmark columns that exist in the row""" return row[[col for col in benchmark_cols if col in row]].mean() def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols_paired: list, cols_paired: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" # raw_data = get_raw_eval_results(results_path, requests_path) # all_data_json = [v.to_dict() for v in raw_data] all_data_json = [] benchmark_cols = [col[0] for col in benchmark_cols_paired] with open('./master_table.json') as f: content = json.load(f) for key, val in content.items(): val['eval_name'] = val['id'] del val['id'] if 'link' in val and val['link'].strip(): val['Algorithm'] = model_hyperlink(val['link'], val['name']) else: val['Algorithm'] = val['name'] del val['name'] # fill in the missing benchmark columns as 0 for display_name, benchmark in benchmark_cols_paired: if benchmark not in val: val[display_name] = 0 else: val[display_name] = val[benchmark] del val[benchmark] # change all the keys to the display names for display_name, col in cols_paired: if display_name in val: pass elif col in val: val[display_name] = val[col] del val[col] else: val[display_name] = None all_data_json.append(val) print(f'All data json: {all_data_json}') df = pd.DataFrame.from_records(all_data_json) df[AutoEvalColumn.average.name] = df.apply(lambda row: calc_average(row, benchmark_cols), axis=1) print(df, AutoEvalColumn.average.name) df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) df = df[cols].round(decimals=4) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] print(sub_entries) for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]