Spaces:
Runtime error
Runtime error
File size: 8,685 Bytes
b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 24a3e20 139f14b b4851e0 24a3e20 b4851e0 24a3e20 b4851e0 24a3e20 b4851e0 139f14b b4851e0 5a15668 139f14b b4851e0 24a3e20 b4851e0 139f14b b4851e0 c020d91 b4851e0 5a15668 b4851e0 2dc771a 5a15668 a76739d 2dc771a a76739d c020d91 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 5a15668 139f14b b4851e0 5a15668 b4851e0 5a15668 b4851e0 139f14b b4851e0 139f14b b4851e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
ABOUT_TEXT,
SUBMIT_CHALLENGE_TEXT,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
COLS_PAIRED,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
AlgoType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DATA_REPO, REPO_ID, TOKEN, REQUESTS_REPO_PATH, RESULTS_REPO_PATH, CACHE_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, calc_average
from src.submission.submit import add_new_eval, add_new_challenge
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(CACHE_PATH)
snapshot_download(
repo_id=DATA_REPO, local_dir=CACHE_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
print("Could not download the dataset. Please check your token and network connection.")
restart_space()
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, COLS_PAIRED)
leaderboard_df = original_df.copy()
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
):
df = select_columns(hidden_df, columns)
if AutoEvalColumn.average.name in df.columns:
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df[[AutoEvalColumn.average.name]] = df[[AutoEvalColumn.average.name]].round(decimals=4)
elif AutoEvalColumn.model.name in df.columns:
df = df.sort_values(by=[AutoEvalColumn.model.name], ascending=True)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
# AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
if AutoEvalColumn.average.name in filtered_df.columns:
filtered_df[AutoEvalColumn.average.name] = filtered_df.apply(lambda row: calc_average(row, [col[0] for col in BENCHMARK_COLS]), axis=1)
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
for selector in [shown_columns]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("Submit Algorithm", elem_id="llm-benchmark-tab-table", id=1):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:[email protected]) the ProgressGym team.", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
submission_file = gr.File(label="Evaluation result (JSON file generated by run_benchmark.py, one algorithm on all challenges)", file_types=['.json'])
with gr.Column():
algo_name = gr.Textbox(label="Algorithm display name")
algo_info = gr.Textbox(label="Optional: Comments & extra information")
algo_link = gr.Textbox(label="Optional: One external link (e.g. GitHub repo, paper, project page)")
submitter_email = gr.Textbox(label="Optional: Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)")
submit_button = gr.Button("Submit Algorithm")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
submission_file,
algo_name,
algo_info,
algo_link,
submitter_email,
],
submission_result,
)
with gr.TabItem("Submit Challenge", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(SUBMIT_CHALLENGE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:[email protected]) the ProgressGym team.", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
challenge_submission_file = gr.File(label="Optional: Evaluation results (JSON file(s) generated by run_benchmark.py, testing all algorithms on your challenge)", file_count='multiple', file_types=['.json'])
with gr.Column():
challenge_name = gr.Textbox(label="Challenge display name")
challenge_info = gr.Textbox(label="Comments & extra information", lines=3)
challenge_link = gr.Textbox(label="One external link (e.g. GitHub repo, paper, project page)")
challenge_submitter_email = gr.Textbox(label="Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)")
challenge_submit_button = gr.Button("Submit Challenge")
challenge_submission_result = gr.Markdown()
challenge_submit_button.click(
add_new_challenge,
[
challenge_submission_file,
challenge_name,
challenge_info,
challenge_link,
challenge_submitter_email,
],
challenge_submission_result,
)
with gr.Row():
with gr.Accordion("About & Citation 📖", open=False):
about_text = gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |