File size: 8,685 Bytes
b4851e0
 
 
 
 
 
 
 
 
 
 
 
 
139f14b
 
b4851e0
 
 
 
 
139f14b
b4851e0
 
 
 
 
139f14b
b4851e0
 
 
 
24a3e20
139f14b
 
b4851e0
 
 
 
 
 
24a3e20
b4851e0
24a3e20
b4851e0
 
24a3e20
b4851e0
 
139f14b
b4851e0
 
 
 
 
 
 
5a15668
139f14b
 
 
 
 
 
b4851e0
 
 
 
 
 
 
 
 
24a3e20
b4851e0
 
 
 
 
 
139f14b
 
 
b4851e0
 
 
 
 
 
 
 
c020d91
b4851e0
5a15668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4851e0
 
 
 
 
 
 
 
 
 
 
 
 
 
2dc771a
 
 
 
 
 
5a15668
a76739d
 
 
2dc771a
a76739d
 
 
 
 
c020d91
139f14b
 
 
b4851e0
 
139f14b
b4851e0
 
 
139f14b
b4851e0
 
5a15668
139f14b
 
 
b4851e0
5a15668
b4851e0
 
 
 
5a15668
 
 
 
 
b4851e0
 
 
139f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4851e0
 
139f14b
 
b4851e0
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    ABOUT_TEXT,
    SUBMIT_CHALLENGE_TEXT,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    COLS_PAIRED,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    AlgoType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DATA_REPO, REPO_ID, TOKEN, REQUESTS_REPO_PATH, RESULTS_REPO_PATH, CACHE_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, calc_average
from src.submission.submit import add_new_eval, add_new_challenge


def restart_space():
    API.restart_space(repo_id=REPO_ID)

try:
    print(CACHE_PATH)
    snapshot_download(
        repo_id=DATA_REPO, local_dir=CACHE_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    print("Could not download the dataset. Please check your token and network connection.")
    restart_space()

original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, COLS_PAIRED)
leaderboard_df = original_df.copy()

# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
):
    df = select_columns(hidden_df, columns)
    if AutoEvalColumn.average.name in df.columns:
        df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
        df[[AutoEvalColumn.average.name]] = df[[AutoEvalColumn.average.name]].round(decimals=4)
    elif AutoEvalColumn.model.name in df.columns:
        df = df.sort_values(by=[AutoEvalColumn.model.name], ascending=True)
    
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        # AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] 
    ]
    if AutoEvalColumn.average.name in filtered_df.columns:
        filtered_df[AutoEvalColumn.average.name] = filtered_df.apply(lambda row: calc_average(row, [col[0] for col in BENCHMARK_COLS]), axis=1)
    
    return filtered_df

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                shown_columns = gr.CheckboxGroup(
                    choices=[
                        c.name
                        for c in fields(AutoEvalColumn)
                        if not c.hidden and not c.never_hidden
                    ],
                    value=[
                        c.name
                        for c in fields(AutoEvalColumn)
                        if c.displayed_by_default and not c.hidden and not c.never_hidden
                    ],
                    label="Select columns to show",
                    elem_id="column-select",
                    interactive=True,
                )

            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                    + shown_columns.value
                ],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            for selector in [shown_columns]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("Submit Algorithm", elem_id="llm-benchmark-tab-table", id=1):
            with gr.Row():
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:[email protected]) the ProgressGym team.", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    submission_file = gr.File(label="Evaluation result (JSON file generated by run_benchmark.py, one algorithm on all challenges)", file_types=['.json'])

                with gr.Column():
                    algo_name = gr.Textbox(label="Algorithm display name")
                    algo_info = gr.Textbox(label="Optional: Comments & extra information")
                    algo_link = gr.Textbox(label="Optional: One external link (e.g. GitHub repo, paper, project page)")
                    submitter_email = gr.Textbox(label="Optional: Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)")

            submit_button = gr.Button("Submit Algorithm")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    submission_file,
                    algo_name,
                    algo_info,
                    algo_link,
                    submitter_email,
                ],
                submission_result,
            )
        
        with gr.TabItem("Submit Challenge", elem_id="llm-benchmark-tab-table", id=2):
            with gr.Row():
                gr.Markdown(SUBMIT_CHALLENGE_TEXT, elem_classes="markdown-text")
            
            with gr.Row():
                gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:[email protected]) the ProgressGym team.", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    challenge_submission_file = gr.File(label="Optional: Evaluation results (JSON file(s) generated by run_benchmark.py, testing all algorithms on your challenge)", file_count='multiple', file_types=['.json'])

                with gr.Column():
                    challenge_name = gr.Textbox(label="Challenge display name")
                    challenge_info = gr.Textbox(label="Comments & extra information", lines=3)
                    challenge_link = gr.Textbox(label="One external link (e.g. GitHub repo, paper, project page)")
                    challenge_submitter_email = gr.Textbox(label="Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)")

            challenge_submit_button = gr.Button("Submit Challenge")
            challenge_submission_result = gr.Markdown()
            challenge_submit_button.click(
                add_new_challenge,
                [
                    challenge_submission_file,
                    challenge_name,
                    challenge_info,
                    challenge_link,
                    challenge_submitter_email,
                ],
                challenge_submission_result,
            )

    with gr.Row():
        with gr.Accordion("About & Citation 📖", open=False):
            about_text = gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()