File size: 5,595 Bytes
42f14e1
 
b28a580
 
42f14e1
 
 
b28a580
 
 
 
 
 
 
 
 
 
0c1fd76
 
b28a580
 
0474b44
 
 
 
 
 
0c1fd76
 
 
0474b44
b28a580
0474b44
 
 
 
 
 
 
 
 
 
 
42f14e1
0474b44
0c1fd76
0474b44
 
 
 
42f14e1
0474b44
 
 
 
42f14e1
0474b44
 
 
42f14e1
0474b44
 
 
 
 
 
 
 
 
42f14e1
 
0474b44
 
 
 
42f14e1
0c1fd76
 
 
 
 
 
 
42f14e1
0474b44
b28a580
42f14e1
 
 
 
0474b44
42f14e1
 
 
0474b44
42f14e1
 
0474b44
 
 
 
42f14e1
0474b44
42f14e1
0474b44
42f14e1
 
0474b44
42f14e1
 
0474b44
42f14e1
0474b44
 
42f14e1
0474b44
42f14e1
0474b44
 
42f14e1
0474b44
42f14e1
0c1fd76
 
 
 
42f14e1
 
0474b44
 
 
 
 
 
 
 
 
 
 
42f14e1
0474b44
 
 
 
 
 
 
 
 
 
 
 
 
b28a580
0474b44
b28a580
0474b44
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import json
import gradio as gr
import pandas as pd
import numpy as np

from pathlib import Path
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    ABOUT_TEXT,
    SUBMISSION_TEXT
)
from src.display.css_html_js import custom_css
from src.display.formatting import has_no_nan_values, make_clickable_model, model_hyperlink

# 定义列组
COLUMN_GROUPS = {
    "ALL": ["Model", "Perception", "Reasoning", "IF", "Safety", "AMU Score", 
            "Modality Selection", "Instruction Following", "Modality Synergy", 
            "AMG Score", "Overall", "Verified"],
    "AMU": ["Model", "Perception", "Reasoning", "IF", "Safety", "AMU Score", "Verified"],
    "AMG": ["Model", "Modality Selection", "Instruction Following", "Modality Synergy", "AMG Score", "Verified"]
}

def format_table(df):
    """Format the dataframe for display"""
    # 设置列的显示格式
    float_cols = df.select_dtypes(include=['float64']).columns
    for col in float_cols:
        df[col] = df[col].apply(lambda x: f"{x:.2f}")  # 修改为保留2位小数
        
    bold_columns = ['AMU Score', 'AMG Score', 'Overall']
    for col in bold_columns:
        if col in df.columns:
            df[col] = df[col].apply(lambda x: f'**{x}**')
    
    # 添加模型链接
    model_links = dict(zip(df['Model'], df['Model Link']))
    # df['Model'] = df['Model'].apply(lambda x: f'<a href="{model_links[x]}" target="_blank">{x}</a>')
    df['Model'] = df['Model'].apply(lambda x: f'[{x}]({model_links[x]})')
    # df['Model'] = df.apply(lambda x: model_hyperlink(model_links[x['Model']], x['Model']), axis=1)
    return df

def regex_table(dataframe, regex, filter_button, column_group="ALL"):
    """Takes a model name as a regex, then returns only the rows that has that in it."""
    # 深拷贝确保不修改原始数据
    df = dataframe.copy()
    
    # 选择要显示的列
    columns_to_show = COLUMN_GROUPS.get(column_group, COLUMN_GROUPS["ALL"])
    df = df[columns_to_show]
    
    # Split regex statement by comma and trim whitespace around regexes
    if regex:
        regex_list = [x.strip() for x in regex.split(",")]
        # Join the list into a single regex pattern with '|' acting as OR
        combined_regex = '|'.join(regex_list)
        # Filter based on model name regex
        df = df[df["Model"].str.contains(combined_regex, case=False, na=False)]
    
    df = df.sort_values(by='Overall' if 'Overall' in columns_to_show else columns_to_show[-1], ascending=False)
    df.reset_index(drop=True, inplace=True)
    
    # Add index column
    df.insert(0, '', range(1, 1 + len(df)))
    
    return df


df = pd.read_csv("data/eval_board.csv").sort_values(by='Overall', ascending=False)
total_models = len(df)

# Format numbers and add links
df = format_table(df)

with gr.Blocks(css=custom_css) as app:
    gr.HTML(TITLE)
    with gr.Row():
        with gr.Column(scale=6):
            gr.Markdown(INTRODUCTION_TEXT.format(str(total_models)))
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏆 Model Performance Leaderboard"):
            with gr.Row():
                search_overall = gr.Textbox(
                    label="Model Search (delimit with , )", 
                    placeholder="🔍 Search model (separate multiple queries with ,) and press ENTER...",
                    show_label=False
                )
                column_group = gr.Radio(
                    choices=list(COLUMN_GROUPS.keys()),
                    value="ALL",
                    label="Select columns to show"
                )
            
            with gr.Row():
                performance_table_hidden = gr.Dataframe(
                    df,
                    headers=df.columns.tolist(),
                    elem_id="performance_table_hidden",
                    wrap=True,
                    visible=False,
                    datatype='markdown',
                )
                performance_table = gr.Dataframe(
                    regex_table(df.copy(), "", []),
                    headers=df.columns.tolist(),
                    elem_id="performance_table",
                    wrap=True,
                    show_label=False,
                    datatype='markdown',
                )
        
        with gr.TabItem("About"):
            gr.Markdown(ABOUT_TEXT)
            
        with gr.TabItem("Submit results 🚀", id=3):
            gr.Markdown(SUBMISSION_TEXT)
    
    with gr.Accordion("📚 Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            lines=7,
            label="Copy the following to cite these results.",
            elem_id="citation-button",
            show_copy_button=True,
        )
    
    # Set up event handlers
    def update_table(search_text, selected_group):
        return regex_table(df, search_text, [], selected_group)
    
    search_overall.change(
        update_table,
        inputs=[search_overall, column_group],
        outputs=performance_table
    )
    
    column_group.change(
        update_table,
        inputs=[search_overall, column_group],
        outputs=performance_table
    )

# Set up scheduler
scheduler = BackgroundScheduler()
scheduler.add_job(lambda: None, "interval", seconds=18000)  # every 5 hours
scheduler.start()

# Launch the app
app.launch(share=True)