File size: 1,633 Bytes
b28a580 0b6eee6 0320e27 918920a b28a580 ad61760 918920a b28a580 0320e27 918920a 0b07026 918920a 0320e27 b28a580 0320e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
from dataclasses import dataclass
from enum import Enum
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
task0 = Task("anli_r1", "acc", "ANLI")
task1 = Task("logiqa", "acc_norm", "LogiQA")
NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------
# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">Align-Anything</h1>"""
# MJB_LOGO = '<img src="" alt="Logo" style="width: 100%; display: block; margin: auto;">'
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
# Align-Anything
Align-Anything aims to align any modality large models (any-to-any models), including LLMs, VLMs, and others, with human intentions and values.
More details about the definition and milestones of alignment for Large Models can be found in AI Alignment.
"""
# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
"""
EVALUATION_QUEUE_TEXT = """
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = """
@article{Align-Anything,
title={ALIGN ANYTHING: TRAINING ALL MODALITY MODELS TO FOLLOW INSTRUCTIONS WITH UNIFIED LANGUAGE FEEDBACK},
author={Xuyao Wang and Jiayi Zhou and Jiaming Ji and Yaodong Yang},
journal={arXiv preprint arXiv:2411.20343},
eprint={2411.20343},
eprinttype = {arXiv},
year={2024}
}
"""
ABOUT_TEXT = """
""" |