File size: 1,633 Bytes
b28a580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b6eee6
0320e27
918920a
b28a580
 
 
ad61760
918920a
 
b28a580
 
 
 
 
 
 
 
 
 
0320e27
918920a
0b07026
918920a
 
 
 
0320e27
 
b28a580
0320e27
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from dataclasses import dataclass
from enum import Enum

@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str


# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
    # task_key in the json file, metric_key in the json file, name to display in the leaderboard 
    task0 = Task("anli_r1", "acc", "ANLI")
    task1 = Task("logiqa", "acc_norm", "LogiQA")

NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------



# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">Align-Anything</h1>"""

# MJB_LOGO = '<img src="" alt="Logo" style="width: 100%; display: block; margin: auto;">'

# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
# Align-Anything
Align-Anything aims to align any modality large models (any-to-any models), including LLMs, VLMs, and others, with human intentions and values. 
More details about the definition and milestones of alignment for Large Models can be found in AI Alignment.
"""

# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
"""

EVALUATION_QUEUE_TEXT = """
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = """
@article{Align-Anything,
  title={ALIGN ANYTHING: TRAINING ALL MODALITY MODELS TO FOLLOW INSTRUCTIONS WITH UNIFIED LANGUAGE FEEDBACK},
  author={Xuyao Wang and Jiayi Zhou and Jiaming Ji and Yaodong Yang},
  journal={arXiv preprint arXiv:2411.20343},
  eprint={2411.20343},
  eprinttype = {arXiv},
  year={2024}
}
"""


ABOUT_TEXT = """
"""