Update app.py
Browse files
app.py
CHANGED
@@ -20,10 +20,11 @@ model.to(device)
|
|
20 |
TITLE = f"# [{model_name}](https://huggingface.co/{model_name})"
|
21 |
|
22 |
|
23 |
-
def process_image(image):
|
24 |
"""
|
25 |
Process a single image to generate a caption.
|
26 |
Supports image input as file path, numpy array, or PIL Image.
|
|
|
27 |
"""
|
28 |
try:
|
29 |
# Convert input to PIL image if necessary
|
@@ -45,8 +46,10 @@ def process_image(image):
|
|
45 |
input_ids=inputs["input_ids"],
|
46 |
pixel_values=inputs["pixel_values"],
|
47 |
max_new_tokens=1024,
|
48 |
-
num_beams=
|
49 |
do_sample=True,
|
|
|
|
|
50 |
)
|
51 |
|
52 |
# Decode and post-process the generated text
|
@@ -71,28 +74,43 @@ with gr.Blocks(css=css) as demo:
|
|
71 |
with gr.Row():
|
72 |
with gr.Column():
|
73 |
input_img = gr.Image(label="Input Picture")
|
74 |
-
submit_btn = gr.Button(value="Submit")
|
75 |
with gr.Column():
|
76 |
output_text = gr.Textbox(label="Output Text")
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
gr.Examples(
|
79 |
[
|
80 |
-
["eval_img_1.jpg"],
|
81 |
-
["eval_img_2.jpg"],
|
82 |
-
["eval_img_3.jpg"],
|
83 |
-
["eval_img_4.jpg"],
|
84 |
-
["eval_img_5.jpg"],
|
85 |
-
["eval_img_6.jpg"],
|
86 |
-
["eval_img_7.png"],
|
87 |
-
["eval_img_8.jpg"],
|
88 |
],
|
89 |
-
inputs=[input_img],
|
90 |
outputs=[output_text],
|
91 |
fn=process_image,
|
92 |
label="Try captioning on below examples",
|
93 |
)
|
94 |
|
95 |
-
submit_btn.click(
|
|
|
|
|
|
|
|
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
demo.launch(debug=True)
|
|
|
20 |
TITLE = f"# [{model_name}](https://huggingface.co/{model_name})"
|
21 |
|
22 |
|
23 |
+
def process_image(image, num_beams=5, min_p=0.0, top_p=1.0):
|
24 |
"""
|
25 |
Process a single image to generate a caption.
|
26 |
Supports image input as file path, numpy array, or PIL Image.
|
27 |
+
Generation settings (num_beams, min_p, top_p) can be customized.
|
28 |
"""
|
29 |
try:
|
30 |
# Convert input to PIL image if necessary
|
|
|
46 |
input_ids=inputs["input_ids"],
|
47 |
pixel_values=inputs["pixel_values"],
|
48 |
max_new_tokens=1024,
|
49 |
+
num_beams=num_beams,
|
50 |
do_sample=True,
|
51 |
+
top_p=top_p,
|
52 |
+
min_p=min_p,
|
53 |
)
|
54 |
|
55 |
# Decode and post-process the generated text
|
|
|
74 |
with gr.Row():
|
75 |
with gr.Column():
|
76 |
input_img = gr.Image(label="Input Picture")
|
|
|
77 |
with gr.Column():
|
78 |
output_text = gr.Textbox(label="Output Text")
|
79 |
|
80 |
+
submit_btn = gr.Button(value="Submit")
|
81 |
+
|
82 |
+
num_beams_slider = gr.Slider(
|
83 |
+
minimum=1, maximum=5, step=1, value=5, label="Number of Beams"
|
84 |
+
)
|
85 |
+
min_p_slider = gr.Slider(
|
86 |
+
minimum=0, maximum=1, step=0.01, value=0.0, label="Min-P"
|
87 |
+
)
|
88 |
+
top_p_slider = gr.Slider(
|
89 |
+
minimum=0, maximum=1, step=0.01, value=1.0, label="Top-P"
|
90 |
+
)
|
91 |
+
|
92 |
gr.Examples(
|
93 |
[
|
94 |
+
["eval_img_1.jpg", 5, 0.0, 1.0],
|
95 |
+
["eval_img_2.jpg", 5, 0.0, 1.0],
|
96 |
+
["eval_img_3.jpg", 5, 0.0, 1.0],
|
97 |
+
["eval_img_4.jpg", 5, 0.0, 1.0],
|
98 |
+
["eval_img_5.jpg", 5, 0.0, 1.0],
|
99 |
+
["eval_img_6.jpg", 5, 0.0, 1.0],
|
100 |
+
["eval_img_7.png", 5, 0.0, 1.0],
|
101 |
+
["eval_img_8.jpg", 5, 0.0, 1.0],
|
102 |
],
|
103 |
+
inputs=[input_img, num_beams_slider, min_p_slider, top_p_slider],
|
104 |
outputs=[output_text],
|
105 |
fn=process_image,
|
106 |
label="Try captioning on below examples",
|
107 |
)
|
108 |
|
109 |
+
submit_btn.click(
|
110 |
+
process_image,
|
111 |
+
[input_img, num_beams_slider, min_p_slider, top_p_slider],
|
112 |
+
[output_text]
|
113 |
+
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
demo.launch(debug=True)
|