Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,34 +4,26 @@ import re
|
|
| 4 |
from PIL import Image
|
| 5 |
import os
|
| 6 |
import numpy as np
|
| 7 |
-
|
| 8 |
import spaces
|
| 9 |
import subprocess
|
|
|
|
|
|
|
|
|
|
| 10 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 11 |
|
| 12 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
TITLE = "# [
|
| 16 |
-
DESCRIPTION = "[microsoft/Florence-2
|
| 17 |
|
| 18 |
-
def modify_caption(caption: str) -> str:
|
| 19 |
-
special_patterns = [
|
| 20 |
-
(r'the image is ', ''),
|
| 21 |
-
(r'the image captures ', ''),
|
| 22 |
-
(r'the image showcases ', ''),
|
| 23 |
-
(r'the image shows ', ''),
|
| 24 |
-
(r'the image ', ''),
|
| 25 |
-
]
|
| 26 |
-
|
| 27 |
-
for pattern, replacement in special_patterns:
|
| 28 |
-
caption = re.sub(pattern, replacement, caption, flags=re.IGNORECASE)
|
| 29 |
-
|
| 30 |
-
caption = caption.replace('\n', '').replace('\r', '')
|
| 31 |
-
caption = re.sub(r'(?<=[.,?!])(?=[^\s])', r' ', caption)
|
| 32 |
-
caption = ' '.join(caption.strip().splitlines())
|
| 33 |
-
|
| 34 |
-
return caption
|
| 35 |
|
| 36 |
@spaces.GPU
|
| 37 |
def process_image(image):
|
|
@@ -42,19 +34,18 @@ def process_image(image):
|
|
| 42 |
if image.mode != "RGB":
|
| 43 |
image = image.convert("RGB")
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt")#.to("cuda")
|
| 48 |
generated_ids = model.generate(
|
| 49 |
input_ids=inputs["input_ids"],
|
| 50 |
pixel_values=inputs["pixel_values"],
|
| 51 |
max_new_tokens=1024,
|
| 52 |
-
num_beams=
|
| 53 |
do_sample=True
|
| 54 |
)
|
| 55 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 56 |
-
|
| 57 |
-
return
|
|
|
|
| 58 |
|
| 59 |
def extract_frames(image_path, output_folder):
|
| 60 |
with Image.open(image_path) as img:
|
|
@@ -72,6 +63,7 @@ def extract_frames(image_path, output_folder):
|
|
| 72 |
|
| 73 |
return frame_paths
|
| 74 |
|
|
|
|
| 75 |
def process_folder(folder_path):
|
| 76 |
if not os.path.isdir(folder_path):
|
| 77 |
return "Invalid folder path."
|
|
@@ -119,6 +111,7 @@ def process_folder(folder_path):
|
|
| 119 |
processed_files.append(f"Processed {filename} -> {txt_filename}")
|
| 120 |
|
| 121 |
result = "\n".join(processed_files + skipped_files)
|
|
|
|
| 122 |
return result if result else "No image files found or all files were skipped in the specified folder."
|
| 123 |
|
| 124 |
css = """
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import os
|
| 6 |
import numpy as np
|
|
|
|
| 7 |
import spaces
|
| 8 |
import subprocess
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
|
| 12 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 13 |
|
| 14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
+
'PJMixers-Dev/Florence-2-base-danbooru2022-316k',
|
| 16 |
+
trust_remote_code=True,
|
| 17 |
+
torch_dtype=torch.float32
|
| 18 |
+
).eval()
|
| 19 |
+
processor = AutoProcessor.from_pretrained(
|
| 20 |
+
'PJMixers-Dev/Florence-2-base-danbooru2022-316k',
|
| 21 |
+
trust_remote_code=True
|
| 22 |
+
)
|
| 23 |
|
| 24 |
+
TITLE = "# [PJMixers-Dev/Florence-2-base-danbooru2022-316k](https://huggingface.co/PJMixers-Dev/Florence-2-base-danbooru2022-316k/)"
|
| 25 |
+
DESCRIPTION = "[microsoft/Florence-2](https://huggingface.co/microsoft/Florence-2) tuned on [animelover/danbooru2022](https://huggingface.co/datasets/animelover/danbooru2022)."
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@spaces.GPU
|
| 29 |
def process_image(image):
|
|
|
|
| 34 |
if image.mode != "RGB":
|
| 35 |
image = image.convert("RGB")
|
| 36 |
|
| 37 |
+
inputs = processor(text="<CAPTION>", images=image, return_tensors="pt").to(torch.float32)
|
|
|
|
|
|
|
| 38 |
generated_ids = model.generate(
|
| 39 |
input_ids=inputs["input_ids"],
|
| 40 |
pixel_values=inputs["pixel_values"],
|
| 41 |
max_new_tokens=1024,
|
| 42 |
+
num_beams=5,
|
| 43 |
do_sample=True
|
| 44 |
)
|
| 45 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 46 |
+
|
| 47 |
+
return processor.post_process_generation(generated_text, task="<CAPTION>", image_size=(image.width, image.height))
|
| 48 |
+
|
| 49 |
|
| 50 |
def extract_frames(image_path, output_folder):
|
| 51 |
with Image.open(image_path) as img:
|
|
|
|
| 63 |
|
| 64 |
return frame_paths
|
| 65 |
|
| 66 |
+
|
| 67 |
def process_folder(folder_path):
|
| 68 |
if not os.path.isdir(folder_path):
|
| 69 |
return "Invalid folder path."
|
|
|
|
| 111 |
processed_files.append(f"Processed {filename} -> {txt_filename}")
|
| 112 |
|
| 113 |
result = "\n".join(processed_files + skipped_files)
|
| 114 |
+
|
| 115 |
return result if result else "No image files found or all files were skipped in the specified folder."
|
| 116 |
|
| 117 |
css = """
|