PFEemp2024's picture
solving GPU error for previous version
4a1df2e
raw
history blame
10.6 kB
import re
import string
import flair
import jieba
import pycld2 as cld2
from .importing import LazyLoader
def has_letter(word):
"""Returns true if `word` contains at least one character in [A-Za-z]."""
return re.search("[A-Za-z]+", word) is not None
def is_one_word(word):
return len(words_from_text(word)) == 1
def add_indent(s_, numSpaces):
s = s_.split("\n")
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(numSpaces * " ") + line for line in s]
s = "\n".join(s)
s = first + "\n" + s
return s
def words_from_text(s, words_to_ignore=[]):
"""Lowercases a string, removes all non-alphanumeric characters, and splits
into words."""
try:
isReliable, textBytesFound, details = cld2.detect(s)
if details[0][0] == "Chinese" or details[0][0] == "ChineseT":
seg_list = jieba.cut(s, cut_all=False)
s = " ".join(seg_list)
else:
s = " ".join(s.split())
except Exception:
s = " ".join(s.split())
homos = """˗৭Ȣ𝟕бƼᏎƷᒿlO`ɑЬϲԁе𝚏ɡհіϳ𝒌ⅼmոорԛⲅѕ𝚝սѵԝ×уᴢ"""
exceptions = """'-_*@"""
filter_pattern = homos + """'\\-_\\*@"""
# TODO: consider whether one should add "." to `exceptions` (and "\." to `filter_pattern`)
# example "My email address is [email protected]"
filter_pattern = f"[\\w{filter_pattern}]+"
words = []
for word in s.split():
# Allow apostrophes, hyphens, underscores, asterisks and at signs as long as they don't begin the word.
word = word.lstrip(exceptions)
filt = [w.lstrip(exceptions) for w in re.findall(filter_pattern, word)]
words.extend(filt)
words = list(filter(lambda w: w not in words_to_ignore + [""], words))
return words
class TextAttackFlairTokenizer(flair.data.Tokenizer):
def tokenize(self, text: str):
return words_from_text(text)
def default_class_repr(self):
if hasattr(self, "extra_repr_keys"):
extra_params = []
for key in self.extra_repr_keys():
extra_params.append(" (" + key + ")" + ": {" + key + "}")
if len(extra_params):
extra_str = "\n" + "\n".join(extra_params) + "\n"
extra_str = f"({extra_str})"
else:
extra_str = ""
extra_str = extra_str.format(**self.__dict__)
else:
extra_str = ""
return f"{self.__class__.__name__}{extra_str}"
class ReprMixin(object):
"""Mixin for enhanced __repr__ and __str__."""
def __repr__(self):
return default_class_repr(self)
__str__ = __repr__
def extra_repr_keys(self):
"""extra fields to be included in the representation of a class."""
return []
LABEL_COLORS = [
"red",
"green",
"blue",
"purple",
"yellow",
"orange",
"pink",
"cyan",
"gray",
"brown",
]
def process_label_name(label_name):
"""Takes a label name from a dataset and makes it nice.
Meant to correct different abbreviations and automatically
capitalize.
"""
label_name = label_name.lower()
if label_name == "neg":
label_name = "negative"
elif label_name == "pos":
label_name = "positive"
return label_name.capitalize()
def color_from_label(label_num):
"""Arbitrary colors for different labels."""
try:
label_num %= len(LABEL_COLORS)
return LABEL_COLORS[label_num]
except TypeError:
return "blue"
def color_from_output(label_name, label):
"""Returns the correct color for a label name, like 'positive', 'medicine',
or 'entailment'."""
label_name = label_name.lower()
if label_name in {"entailment", "positive"}:
return "green"
elif label_name in {"contradiction", "negative"}:
return "red"
elif label_name in {"neutral"}:
return "gray"
else:
# if no color pre-stored for label name, return color corresponding to
# the label number (so, even for unknown datasets, we can give each
# class a distinct color)
return color_from_label(label)
class ANSI_ESCAPE_CODES:
"""Escape codes for printing color to the terminal."""
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
GRAY = "\033[37m"
PURPLE = "\033[35m"
YELLOW = "\033[93m"
ORANGE = "\033[38:5:208m"
PINK = "\033[95m"
CYAN = "\033[96m"
GRAY = "\033[38:5:240m"
BROWN = "\033[38:5:52m"
WARNING = "\033[93m"
FAIL = "\033[91m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
""" This color stops the current color sequence. """
STOP = "\033[0m"
def color_text(text, color=None, method=None):
if not (isinstance(color, str) or isinstance(color, tuple)):
raise TypeError(f"Cannot color text with provided color of type {type(color)}")
if isinstance(color, tuple):
if len(color) > 1:
text = color_text(text, color[1:], method)
color = color[0]
if method is None:
return text
if method == "html":
return f"<font color = {color}>{text}</font>"
elif method == "ansi":
if color == "green":
color = ANSI_ESCAPE_CODES.OKGREEN
elif color == "red":
color = ANSI_ESCAPE_CODES.FAIL
elif color == "blue":
color = ANSI_ESCAPE_CODES.OKBLUE
elif color == "purple":
color = ANSI_ESCAPE_CODES.PURPLE
elif color == "yellow":
color = ANSI_ESCAPE_CODES.YELLOW
elif color == "orange":
color = ANSI_ESCAPE_CODES.ORANGE
elif color == "pink":
color = ANSI_ESCAPE_CODES.PINK
elif color == "cyan":
color = ANSI_ESCAPE_CODES.CYAN
elif color == "gray":
color = ANSI_ESCAPE_CODES.GRAY
elif color == "brown":
color = ANSI_ESCAPE_CODES.BROWN
elif color == "bold":
color = ANSI_ESCAPE_CODES.BOLD
elif color == "underline":
color = ANSI_ESCAPE_CODES.UNDERLINE
elif color == "warning":
color = ANSI_ESCAPE_CODES.WARNING
else:
raise ValueError(f"unknown text color {color}")
return color + text + ANSI_ESCAPE_CODES.STOP
elif method == "file":
return "[[" + text + "]]"
_flair_pos_tagger = None
def flair_tag(sentence, tag_type="upos-fast"):
"""Tags a `Sentence` object using `flair` part-of-speech tagger."""
global _flair_pos_tagger
if not _flair_pos_tagger:
from flair.models import SequenceTagger
_flair_pos_tagger = SequenceTagger.load(tag_type)
_flair_pos_tagger.predict(sentence, force_token_predictions=True)
def zip_flair_result(pred, tag_type="upos-fast"):
"""Takes a sentence tagging from `flair` and returns two lists, of words
and their corresponding parts-of-speech."""
from flair.data import Sentence
if not isinstance(pred, Sentence):
raise TypeError("Result from Flair POS tagger must be a `Sentence` object.")
tokens = pred.tokens
word_list = []
pos_list = []
for token in tokens:
word_list.append(token.text)
if "pos" in tag_type:
pos_list.append(token.annotation_layers["pos"][0]._value)
elif tag_type == "ner":
pos_list.append(token.get_label("ner"))
return word_list, pos_list
stanza = LazyLoader("stanza", globals(), "stanza")
def zip_stanza_result(pred, tagset="universal"):
"""Takes the first sentence from a document from `stanza` and returns two
lists, one of words and the other of their corresponding parts-of-
speech."""
if not isinstance(pred, stanza.models.common.doc.Document):
raise TypeError("Result from Stanza POS tagger must be a `Document` object.")
word_list = []
pos_list = []
for sentence in pred.sentences:
for word in sentence.words:
word_list.append(word.text)
if tagset == "universal":
pos_list.append(word.upos)
else:
pos_list.append(word.xpos)
return word_list, pos_list
def check_if_subword(token, model_type, starting=False):
"""Check if ``token`` is a subword token that is not a standalone word.
Args:
token (str): token to check.
model_type (str): type of model (options: "bert", "roberta", "xlnet").
starting (bool): Should be set ``True`` if this token is the starting token of the overall text.
This matters because models like RoBERTa does not add "Ġ" to beginning token.
Returns:
(bool): ``True`` if ``token`` is a subword token.
"""
avail_models = [
"bert",
"gpt",
"gpt2",
"roberta",
"bart",
"electra",
"longformer",
"xlnet",
]
if model_type not in avail_models:
raise ValueError(
f"Model type {model_type} is not available. Options are {avail_models}."
)
if model_type in ["bert", "electra"]:
return True if "##" in token else False
elif model_type in ["gpt", "gpt2", "roberta", "bart", "longformer"]:
if starting:
return False
else:
return False if token[0] == "Ġ" else True
elif model_type == "xlnet":
return False if token[0] == "_" else True
else:
return False
def strip_BPE_artifacts(token, model_type):
"""Strip characters such as "Ġ" that are left over from BPE tokenization.
Args:
token (str)
model_type (str): type of model (options: "bert", "roberta", "xlnet")
"""
avail_models = [
"bert",
"gpt",
"gpt2",
"roberta",
"bart",
"electra",
"longformer",
"xlnet",
]
if model_type not in avail_models:
raise ValueError(
f"Model type {model_type} is not available. Options are {avail_models}."
)
if model_type in ["bert", "electra"]:
return token.replace("##", "")
elif model_type in ["gpt", "gpt2", "roberta", "bart", "longformer"]:
return token.replace("Ġ", "")
elif model_type == "xlnet":
if len(token) > 1 and token[0] == "_":
return token[1:]
else:
return token
else:
return token
def check_if_punctuations(word):
"""Returns ``True`` if ``word`` is just a sequence of punctuations."""
for c in word:
if c not in string.punctuation:
return False
return True