Upload oft_dreambooth_inference.ipynb
Browse files
oft_dreambooth_inference.ipynb
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "acd7b15e",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Dreambooth with OFT\n",
|
| 9 |
+
"This Notebook assumes that you already ran the train_dreambooth.py script to create your own adapter."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"id": "acab479f",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"from diffusers import DiffusionPipeline\n",
|
| 20 |
+
"from diffusers.utils import check_min_version, get_logger\n",
|
| 21 |
+
"from peft import PeftModel\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"# Will error if the minimal version of diffusers is not installed. Remove at your own risks.\n",
|
| 24 |
+
"check_min_version(\"0.10.0.dev0\")\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"logger = get_logger(__name__)\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"BASE_MODEL_NAME = \"stabilityai/stable-diffusion-2-1-base\"\n",
|
| 29 |
+
"ADAPTER_MODEL_PATH = \"INSERT MODEL PATH HERE\""
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": null,
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"outputs": [],
|
| 37 |
+
"source": [
|
| 38 |
+
"pipe = DiffusionPipeline.from_pretrained(\n",
|
| 39 |
+
" BASE_MODEL_NAME,\n",
|
| 40 |
+
")\n",
|
| 41 |
+
"pipe.to(\"cuda\")\n",
|
| 42 |
+
"pipe.unet = PeftModel.from_pretrained(pipe.unet, ADAPTER_MODEL_PATH + \"/unet\", adapter_name=\"default\")\n",
|
| 43 |
+
"pipe.text_encoder = PeftModel.from_pretrained(\n",
|
| 44 |
+
" pipe.text_encoder, ADAPTER_MODEL_PATH + \"/text_encoder\", adapter_name=\"default\"\n",
|
| 45 |
+
")"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": null,
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"prompt = \"A photo of a sks dog\"\n",
|
| 55 |
+
"image = pipe(\n",
|
| 56 |
+
" prompt,\n",
|
| 57 |
+
" num_inference_steps=50,\n",
|
| 58 |
+
" height=512,\n",
|
| 59 |
+
" width=512,\n",
|
| 60 |
+
").images[0]\n",
|
| 61 |
+
"image"
|
| 62 |
+
]
|
| 63 |
+
}
|
| 64 |
+
],
|
| 65 |
+
"metadata": {
|
| 66 |
+
"kernelspec": {
|
| 67 |
+
"display_name": "Python 3 (ipykernel)",
|
| 68 |
+
"language": "python",
|
| 69 |
+
"name": "python3"
|
| 70 |
+
},
|
| 71 |
+
"language_info": {
|
| 72 |
+
"codemirror_mode": {
|
| 73 |
+
"name": "ipython",
|
| 74 |
+
"version": 3
|
| 75 |
+
},
|
| 76 |
+
"file_extension": ".py",
|
| 77 |
+
"mimetype": "text/x-python",
|
| 78 |
+
"name": "python",
|
| 79 |
+
"nbconvert_exporter": "python",
|
| 80 |
+
"pygments_lexer": "ipython3",
|
| 81 |
+
"version": "3.10.11"
|
| 82 |
+
},
|
| 83 |
+
"vscode": {
|
| 84 |
+
"interpreter": {
|
| 85 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 86 |
+
}
|
| 87 |
+
}
|
| 88 |
+
},
|
| 89 |
+
"nbformat": 4,
|
| 90 |
+
"nbformat_minor": 5
|
| 91 |
+
}
|