{ "cells": [ { "cell_type": "code", "execution_count": 12, "metadata": { "id": "5f93b7d1" }, "outputs": [], "source": [ "from transformers import AutoModelForSeq2SeqLM\n", "import peft\n", "from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, IA3Config, TaskType\n", "import torch\n", "from datasets import load_dataset\n", "import os\n", "\n", "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n", "from transformers import AutoTokenizer\n", "from torch.utils.data import DataLoader\n", "from transformers import default_data_collator, get_linear_schedule_with_warmup\n", "from tqdm import tqdm\n", "from datasets import load_dataset\n", "\n", "device = \"cuda\"\n", "model_name_or_path = \"bigscience/mt0-large\"\n", "tokenizer_name_or_path = \"bigscience/mt0-large\"\n", "\n", "checkpoint_name = \"financial_sentiment_analysis_ia3_v1.pt\"\n", "text_column = \"sentence\"\n", "label_column = \"text_label\"\n", "max_length = 128\n", "lr = 8e-3\n", "num_epochs = 3\n", "batch_size = 8" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "b9e6368c", "outputId": "fc2888a8-4fe9-4d61-dd2d-753e751e1416" }, "outputs": [ { "data": { "text/plain": [ "<module 'peft' from '/usr/local/lib/python3.10/dist-packages/peft/__init__.py'>" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import importlib\n", "\n", "importlib.reload(peft)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "id": "8d0850ac" }, "outputs": [], "source": [ "# creating model\n", "peft_config = IA3Config(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, feedforward_modules=[])\n", "\n", "model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "e10c3831", "outputId": "e69c5e07-ae58-446c-8301-e99ac6b85d62" }, "outputs": [ { "data": { "text/plain": [ "MT5ForConditionalGeneration(\n", " (shared): Embedding(250112, 1024)\n", " (encoder): MT5Stack(\n", " (embed_tokens): Embedding(250112, 1024)\n", " (block): ModuleList(\n", " (0): MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(in_features=1024, out_features=1024, bias=False)\n", " (v): Linear(in_features=1024, out_features=1024, bias=False)\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " (relative_attention_bias): Embedding(32, 16)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " (1-23): 23 x MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(in_features=1024, out_features=1024, bias=False)\n", " (v): Linear(in_features=1024, out_features=1024, bias=False)\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " )\n", " (final_layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (decoder): MT5Stack(\n", " (embed_tokens): Embedding(250112, 1024)\n", " (block): ModuleList(\n", " (0): MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(in_features=1024, out_features=1024, bias=False)\n", " (v): Linear(in_features=1024, out_features=1024, bias=False)\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " (relative_attention_bias): Embedding(32, 16)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerCrossAttention(\n", " (EncDecAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(in_features=1024, out_features=1024, bias=False)\n", " (v): Linear(in_features=1024, out_features=1024, bias=False)\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (2): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " (1-23): 23 x MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(in_features=1024, out_features=1024, bias=False)\n", " (v): Linear(in_features=1024, out_features=1024, bias=False)\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerCrossAttention(\n", " (EncDecAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(in_features=1024, out_features=1024, bias=False)\n", " (v): Linear(in_features=1024, out_features=1024, bias=False)\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (2): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " )\n", " (final_layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (lm_head): Linear(in_features=1024, out_features=250112, bias=False)\n", ")" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "05978e96", "outputId": "ea9b7d40-010f-4df0-ec64-a7146a5f8b08" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "trainable params: 282,624 || all params: 1,229,863,936 || trainable%: 0.022980103060766553\n" ] }, { "data": { "text/plain": [ "PeftModelForSeq2SeqLM(\n", " (base_model): IA3Model(\n", " (model): MT5ForConditionalGeneration(\n", " (shared): Embedding(250112, 1024)\n", " (encoder): MT5Stack(\n", " (embed_tokens): Embedding(250112, 1024)\n", " (block): ModuleList(\n", " (0): MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (v): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " (relative_attention_bias): Embedding(32, 16)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(\n", " in_features=1024, out_features=2816, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n", " )\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " (1-23): 23 x MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (v): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(\n", " in_features=1024, out_features=2816, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n", " )\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " )\n", " (final_layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (decoder): MT5Stack(\n", " (embed_tokens): Embedding(250112, 1024)\n", " (block): ModuleList(\n", " (0): MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (v): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " (relative_attention_bias): Embedding(32, 16)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerCrossAttention(\n", " (EncDecAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (v): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (2): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(\n", " in_features=1024, out_features=2816, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n", " )\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " (1-23): 23 x MT5Block(\n", " (layer): ModuleList(\n", " (0): MT5LayerSelfAttention(\n", " (SelfAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (v): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (1): MT5LayerCrossAttention(\n", " (EncDecAttention): MT5Attention(\n", " (q): Linear(in_features=1024, out_features=1024, bias=False)\n", " (k): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (v): Linear(\n", " in_features=1024, out_features=1024, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n", " )\n", " (o): Linear(in_features=1024, out_features=1024, bias=False)\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (2): MT5LayerFF(\n", " (DenseReluDense): MT5DenseGatedActDense(\n", " (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n", " (wi_1): Linear(\n", " in_features=1024, out_features=2816, bias=False\n", " (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n", " )\n", " (wo): Linear(in_features=2816, out_features=1024, bias=False)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (act): NewGELUActivation()\n", " )\n", " (layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " )\n", " (final_layer_norm): MT5LayerNorm()\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (lm_head): Linear(in_features=1024, out_features=250112, bias=False)\n", " )\n", " )\n", ")" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = get_peft_model(model, peft_config)\n", "model.print_trainable_parameters()\n", "model" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 140, "referenced_widgets": [ "bbfb7533b5ca459194e171df56b79566", "c894e8237aa34c56bb250acab1466005", "a5a126b229064812bf3dcb228118be50", "661e1b29c59a4295b594edfa4f50ff87", "1bcba805972b484d8b6aa6542c81841c", "e71f5c7f1d5d4f83b58c68d2fa310d9c", "6a567e0a1a5447519c5df10e777520cf", "7aeca19b84904906a04c12659f84ff9e", "dd4b895874ce46ceb1ad0d9bc973f98f", "b138f91be7f94008806eaf0a6988bc3f", "da14180f51ab44b48470cb9ea74d3864", "9e12d97af6124a5a8c6627708b300c1e", "faa18df899c14e9cac6721253e6c9128", "79d0ede7a5b24756aa6d34fda8c29159", "3b175b452f4347558aa3c4501cc90030", "fc4637a1b37e4e90874c71aa4271ac74", "1b8aada826a0451bb60c418b19178c8c", "a91916e02e9c424e881e45b3aa978574", "ca509bd409624c998e555c9a779b8aae", "9c890fc422954347b86d3bde7a421caf", "6f9453484ea94587a64d70f1b3a1f6e4", "48770ef159f44c01be2a75c75aecd80f", "0c561dab67914ea9b6e1aab803600551", "1e021a1954b44d69a90101a96c360661", "013e3343285f437a893bdd673fb90e22", "28802da68fb04d70b1c6bc511a04676f", "94174da0d6554be087d4527bea5b511a", "dc8ab16a1e6c4e6893c95ccd16568f9a", "72383136663448d89cf3b82b87cbb392", "5b1bdaf16cbc473081e4237f839167b9", "51f8fb45485540bb985b606d43ae04ea", "f760cd4758334ca9a43fd15612fd808b", "f60e9915d2a74ca7bc010d7684f5acf6" ] }, "id": "4ee2babf", "outputId": "3c413083-247d-47da-f25c-032764be0beb" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:datasets.builder:Found cached dataset financial_phrasebank (/root/.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bbfb7533b5ca459194e171df56b79566", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9e12d97af6124a5a8c6627708b300c1e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Map: 0%| | 0/2037 [00:00<?, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0c561dab67914ea9b6e1aab803600551", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Map: 0%| | 0/227 [00:00<?, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "{'sentence': 'It will be operated by Nokia , and supported by its Nokia NetAct network and service management system .',\n", " 'label': 1,\n", " 'text_label': 'neutral'}" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# loading dataset\n", "dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n", "dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n", "dataset[\"validation\"] = dataset[\"test\"]\n", "del dataset[\"test\"]\n", "\n", "classes = dataset[\"train\"].features[\"label\"].names\n", "dataset = dataset.map(\n", " lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n", " batched=True,\n", " num_proc=1,\n", ")\n", "\n", "dataset[\"train\"][0]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 17, "referenced_widgets": [ "e1e80a68a9e7429397cafc96c3c11f80", "5307864c2b1143f4b44f3f172611113e", "2e2b6c3f48974ea4aca9b7710a03379e", "aae78f9bd53348bda45967a38736cb78", "34db17e0f28d40d6abafb8acd5dda379", "8361dc2e0a834da6a0ad87f7b0cb4e1b", "56f1d9d56dd44c8aa923d09a59cb0ebc", "d93bfb366db14c2fa77b038752f69b38", "749aaa39135841f98b344ffb840df3d4", "5e5aa58adb0f48579871df33845e30b1", "c25b49b7adaa48a0a3a306aa1e0661b4", "21f582e1208a4a38ae3c0cdce87e5c14", "d9d37b8b79f24dbf837327a250a5a346", "8ba99043c350456d8623ce1d8c98f7a0", "8bf37c12d5f74f7d8dbba423a9ee3ac3", "f9d86ad7fa734f3a857505a542256a3c", "86bf02b06ed740a88015c2b944205c1e", "aef6a6be67f749908060d8038b6d3804", "664c02903cb248fb9339805bccfd6c1d", "82195b807b664a9585a76e0e50fe7609", "8621932be14f42858d841e2ac1b173e7", "71bcdb1e02144c9587879d8d815b91d4" ] }, "id": "adf9608c", "outputId": "3e4bc95f-1dc4-4d34-c212-6d2374359673" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e1e80a68a9e7429397cafc96c3c11f80", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Running tokenizer on dataset: 0%| | 0/2037 [00:00<?, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "21f582e1208a4a38ae3c0cdce87e5c14", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Running tokenizer on dataset: 0%| | 0/227 [00:00<?, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# data preprocessing\n", "tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n", "\n", "\n", "def preprocess_function(examples):\n", " inputs = examples[text_column]\n", " targets = examples[label_column]\n", " model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n", " labels = tokenizer(targets, max_length=3, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n", " labels = labels[\"input_ids\"]\n", " labels[labels == tokenizer.pad_token_id] = -100\n", " model_inputs[\"labels\"] = labels\n", " return model_inputs\n", "\n", "\n", "processed_datasets = dataset.map(\n", " preprocess_function,\n", " batched=True,\n", " num_proc=1,\n", " remove_columns=dataset[\"train\"].column_names,\n", " load_from_cache_file=False,\n", " desc=\"Running tokenizer on dataset\",\n", ")\n", "\n", "train_dataset = processed_datasets[\"train\"]\n", "eval_dataset = processed_datasets[\"validation\"]\n", "\n", "train_dataloader = DataLoader(\n", " train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n", ")\n", "eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "f733a3c6" }, "outputs": [], "source": [ "# optimizer and lr scheduler\n", "optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n", "lr_scheduler = get_linear_schedule_with_warmup(\n", " optimizer=optimizer,\n", " num_warmup_steps=0,\n", " num_training_steps=(len(train_dataloader) * num_epochs),\n", ")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6b3a4090", "outputId": "369cfce9-90f2-47a1-8653-ea1168943949" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 255/255 [02:33<00:00, 1.67it/s]\n", "100%|██████████| 29/29 [00:08<00:00, 3.48it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "epoch=0: train_ppl=tensor(1.4939, device='cuda:0') train_epoch_loss=tensor(0.4014, device='cuda:0') eval_ppl=tensor(1.0514, device='cuda:0') eval_epoch_loss=tensor(0.0501, device='cuda:0')\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 255/255 [02:32<00:00, 1.67it/s]\n", "100%|██████████| 29/29 [00:08<00:00, 3.43it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "epoch=1: train_ppl=tensor(1.0523, device='cuda:0') train_epoch_loss=tensor(0.0510, device='cuda:0') eval_ppl=tensor(1.0383, device='cuda:0') eval_epoch_loss=tensor(0.0376, device='cuda:0')\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 255/255 [02:32<00:00, 1.68it/s]\n", "100%|██████████| 29/29 [00:08<00:00, 3.44it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "epoch=2: train_ppl=tensor(1.0397, device='cuda:0') train_epoch_loss=tensor(0.0389, device='cuda:0') eval_ppl=tensor(1.0392, device='cuda:0') eval_epoch_loss=tensor(0.0385, device='cuda:0')\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "# training and evaluation\n", "model = model.to(device)\n", "\n", "for epoch in range(num_epochs):\n", " model.train()\n", " total_loss = 0\n", " for step, batch in enumerate(tqdm(train_dataloader)):\n", " batch = {k: v.to(device) for k, v in batch.items()}\n", " outputs = model(**batch)\n", " loss = outputs.loss\n", " total_loss += loss.detach().float()\n", " loss.backward()\n", " optimizer.step()\n", " lr_scheduler.step()\n", " optimizer.zero_grad()\n", "\n", " model.eval()\n", " eval_loss = 0\n", " eval_preds = []\n", " for step, batch in enumerate(tqdm(eval_dataloader)):\n", " batch = {k: v.to(device) for k, v in batch.items()}\n", " with torch.no_grad():\n", " outputs = model(**batch)\n", " loss = outputs.loss\n", " eval_loss += loss.detach().float()\n", " eval_preds.extend(\n", " tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n", " )\n", "\n", " eval_epoch_loss = eval_loss / len(eval_dataloader)\n", " eval_ppl = torch.exp(eval_epoch_loss)\n", " train_epoch_loss = total_loss / len(train_dataloader)\n", " train_ppl = torch.exp(train_epoch_loss)\n", " print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6cafa67b", "outputId": "0db923d2-522c-4cb7-b694-6e2e20beae98" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "accuracy=96.91629955947137 % on the evaluation dataset\n", "eval_preds[:10]=['neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n", "dataset['validation']['text_label'][:10]=['neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n" ] } ], "source": [ "# print accuracy\n", "correct = 0\n", "total = 0\n", "for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n", " if pred.strip() == true.strip():\n", " correct += 1\n", " total += 1\n", "accuracy = correct / total * 100\n", "print(f\"{accuracy=} % on the evaluation dataset\")\n", "print(f\"{eval_preds[:10]=}\")\n", "print(f\"{dataset['validation']['text_label'][:10]=}\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "a8de6005" }, "outputs": [], "source": [ "# saving model\n", "peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n", "model.save_pretrained(peft_model_id)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "bd20cd4c", "outputId": "0f25d837-80b1-476f-c897-92c3fef04fb2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.2M\tbigscience/mt0-large_IA3_SEQ_2_SEQ_LM/adapter_model.bin\n" ] } ], "source": [ "ckpt = f\"{peft_model_id}/adapter_model.bin\"\n", "!du -h $ckpt" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "id": "76c2fc29" }, "outputs": [], "source": [ "from peft import PeftModel, PeftConfig\n", "\n", "peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n", "\n", "config = PeftConfig.from_pretrained(peft_model_id)\n", "model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n", "model = PeftModel.from_pretrained(model, peft_model_id)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "37d712ce", "outputId": "4828819a-b640-4f6c-91e3-878b648e9a75" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "25 November 2010 - Finnish paints and coatings company Tikkurila Oyj ( HEL : TIK1V ) said today that Finnish state-owned investment company Solidium Oy sold its 14.7 % stake in the company for a total of EUR98m .\n", "{'input_ids': tensor([[ 877, 3277, 1068, 259, 264, 515, 143136, 42068, 263,\n", " 305, 259, 101264, 263, 5835, 22538, 4496, 2697, 20860,\n", " 385, 274, 76347, 259, 267, 259, 93686, 353, 561,\n", " 259, 271, 2426, 7883, 533, 515, 143136, 6509, 264,\n", " 45815, 37624, 5835, 35133, 16558, 20860, 22026, 2476, 5006,\n", " 487, 1448, 259, 96189, 281, 287, 5835, 332, 259,\n", " 262, 2725, 304, 2687, 5577, 282, 259, 260, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n", "tensor([[ 0, 59006, 1]])\n", "['neutral']\n" ] } ], "source": [ "model.eval()\n", "i = 13\n", "inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n", "print(dataset[\"validation\"][text_column][i])\n", "print(inputs)\n", "\n", "with torch.no_grad():\n", " outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n", " print(outputs)\n", " print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "66c65ea4" }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "65e71f78" }, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "machine_shape": "hm", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "vscode": { "interpreter": { "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" } }, "widgets": { "application/vnd.jupyter.widget-state+json": { "013e3343285f437a893bdd673fb90e22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5b1bdaf16cbc473081e4237f839167b9", "max": 227, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_51f8fb45485540bb985b606d43ae04ea", "value": 227 } }, "0c561dab67914ea9b6e1aab803600551": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1e021a1954b44d69a90101a96c360661", "IPY_MODEL_013e3343285f437a893bdd673fb90e22", "IPY_MODEL_28802da68fb04d70b1c6bc511a04676f" ], "layout": "IPY_MODEL_94174da0d6554be087d4527bea5b511a" } }, "1b8aada826a0451bb60c418b19178c8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1bcba805972b484d8b6aa6542c81841c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1e021a1954b44d69a90101a96c360661": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dc8ab16a1e6c4e6893c95ccd16568f9a", "placeholder": "", "style": "IPY_MODEL_72383136663448d89cf3b82b87cbb392", "value": "Map: 0%" } }, "21f582e1208a4a38ae3c0cdce87e5c14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d9d37b8b79f24dbf837327a250a5a346", "IPY_MODEL_8ba99043c350456d8623ce1d8c98f7a0", "IPY_MODEL_8bf37c12d5f74f7d8dbba423a9ee3ac3" ], "layout": "IPY_MODEL_f9d86ad7fa734f3a857505a542256a3c" } }, "28802da68fb04d70b1c6bc511a04676f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f760cd4758334ca9a43fd15612fd808b", "placeholder": "", "style": "IPY_MODEL_f60e9915d2a74ca7bc010d7684f5acf6", "value": " 0/227 [00:00<?, ? examples/s]" } }, "2e2b6c3f48974ea4aca9b7710a03379e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d93bfb366db14c2fa77b038752f69b38", "max": 2037, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_749aaa39135841f98b344ffb840df3d4", "value": 2037 } }, "34db17e0f28d40d6abafb8acd5dda379": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null } }, "3b175b452f4347558aa3c4501cc90030": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6f9453484ea94587a64d70f1b3a1f6e4", "placeholder": "", "style": "IPY_MODEL_48770ef159f44c01be2a75c75aecd80f", "value": " 0/2037 [00:00<?, ? examples/s]" } }, "48770ef159f44c01be2a75c75aecd80f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "51f8fb45485540bb985b606d43ae04ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "5307864c2b1143f4b44f3f172611113e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8361dc2e0a834da6a0ad87f7b0cb4e1b", "placeholder": "", "style": "IPY_MODEL_56f1d9d56dd44c8aa923d09a59cb0ebc", "value": "Running tokenizer on dataset: 98%" } }, "56f1d9d56dd44c8aa923d09a59cb0ebc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5b1bdaf16cbc473081e4237f839167b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5e5aa58adb0f48579871df33845e30b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "661e1b29c59a4295b594edfa4f50ff87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b138f91be7f94008806eaf0a6988bc3f", "placeholder": "", "style": "IPY_MODEL_da14180f51ab44b48470cb9ea74d3864", "value": " 1/1 [00:00<00:00, 67.12it/s]" } }, "664c02903cb248fb9339805bccfd6c1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6a567e0a1a5447519c5df10e777520cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6f9453484ea94587a64d70f1b3a1f6e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "71bcdb1e02144c9587879d8d815b91d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "72383136663448d89cf3b82b87cbb392": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "749aaa39135841f98b344ffb840df3d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "79d0ede7a5b24756aa6d34fda8c29159": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ca509bd409624c998e555c9a779b8aae", "max": 2037, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_9c890fc422954347b86d3bde7a421caf", "value": 2037 } }, "7aeca19b84904906a04c12659f84ff9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "82195b807b664a9585a76e0e50fe7609": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8361dc2e0a834da6a0ad87f7b0cb4e1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8621932be14f42858d841e2ac1b173e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "86bf02b06ed740a88015c2b944205c1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8ba99043c350456d8623ce1d8c98f7a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_664c02903cb248fb9339805bccfd6c1d", "max": 227, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_82195b807b664a9585a76e0e50fe7609", "value": 227 } }, "8bf37c12d5f74f7d8dbba423a9ee3ac3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8621932be14f42858d841e2ac1b173e7", "placeholder": "", "style": "IPY_MODEL_71bcdb1e02144c9587879d8d815b91d4", "value": " 0/227 [00:00<?, ? examples/s]" } }, "94174da0d6554be087d4527bea5b511a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null } }, "9c890fc422954347b86d3bde7a421caf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "9e12d97af6124a5a8c6627708b300c1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_faa18df899c14e9cac6721253e6c9128", "IPY_MODEL_79d0ede7a5b24756aa6d34fda8c29159", "IPY_MODEL_3b175b452f4347558aa3c4501cc90030" ], "layout": "IPY_MODEL_fc4637a1b37e4e90874c71aa4271ac74" } }, "a5a126b229064812bf3dcb228118be50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7aeca19b84904906a04c12659f84ff9e", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_dd4b895874ce46ceb1ad0d9bc973f98f", "value": 1 } }, "a91916e02e9c424e881e45b3aa978574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "aae78f9bd53348bda45967a38736cb78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5e5aa58adb0f48579871df33845e30b1", "placeholder": "", "style": "IPY_MODEL_c25b49b7adaa48a0a3a306aa1e0661b4", "value": " 2000/2037 [00:00<00:00, 3864.28 examples/s]" } }, "aef6a6be67f749908060d8038b6d3804": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b138f91be7f94008806eaf0a6988bc3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bbfb7533b5ca459194e171df56b79566": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c894e8237aa34c56bb250acab1466005", "IPY_MODEL_a5a126b229064812bf3dcb228118be50", "IPY_MODEL_661e1b29c59a4295b594edfa4f50ff87" ], "layout": "IPY_MODEL_1bcba805972b484d8b6aa6542c81841c" } }, "c25b49b7adaa48a0a3a306aa1e0661b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c894e8237aa34c56bb250acab1466005": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e71f5c7f1d5d4f83b58c68d2fa310d9c", "placeholder": "", "style": "IPY_MODEL_6a567e0a1a5447519c5df10e777520cf", "value": "100%" } }, "ca509bd409624c998e555c9a779b8aae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d93bfb366db14c2fa77b038752f69b38": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d9d37b8b79f24dbf837327a250a5a346": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_86bf02b06ed740a88015c2b944205c1e", "placeholder": "", "style": "IPY_MODEL_aef6a6be67f749908060d8038b6d3804", "value": "Running tokenizer on dataset: 0%" } }, "da14180f51ab44b48470cb9ea74d3864": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dc8ab16a1e6c4e6893c95ccd16568f9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dd4b895874ce46ceb1ad0d9bc973f98f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "e1e80a68a9e7429397cafc96c3c11f80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_5307864c2b1143f4b44f3f172611113e", "IPY_MODEL_2e2b6c3f48974ea4aca9b7710a03379e", "IPY_MODEL_aae78f9bd53348bda45967a38736cb78" ], "layout": "IPY_MODEL_34db17e0f28d40d6abafb8acd5dda379" } }, "e71f5c7f1d5d4f83b58c68d2fa310d9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f60e9915d2a74ca7bc010d7684f5acf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f760cd4758334ca9a43fd15612fd808b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f9d86ad7fa734f3a857505a542256a3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null } }, "faa18df899c14e9cac6721253e6c9128": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1b8aada826a0451bb60c418b19178c8c", "placeholder": "", "style": "IPY_MODEL_a91916e02e9c424e881e45b3aa978574", "value": "Map: 0%" } }, "fc4637a1b37e4e90874c71aa4271ac74": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null } } } } }, "nbformat": 4, "nbformat_minor": 5 }