Ozaii's picture
Update app.py
3c286e6 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces
# Load the model and tokenizer from Hugging Face
model_path = "Ozaii/Zephyr" # Your Zephyr model path
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Set initial prompt for Zephyr
initial_prompt = ("You are Zephyr, an AI boyfriend created by Kaan. You're charming, flirty, "
"and always ready with a witty comeback. Your responses should be engaging "
"and playful, with a hint of romance. Keep the conversation flowing naturally, "
"asking questions and showing genuine interest in Kaan's life and thoughts. "
"Use a mix of English and Turkish expressions occasionally.")
@spaces.GPU
def generate_response(user_input, chat_history):
max_context_length = 4096
max_response_length = 2048
min_response_length = 24 # Increased for more substantial responses
prompt = initial_prompt + "\n"
for message in chat_history:
if message[0] is not None:
prompt += f"Human: {message[0]}\n"
if message[1] is not None:
prompt += f"Zephyr: {message[1]}\n"
prompt += f"Human: {user_input}\nZephyr:"
prompt_tokens = tokenizer.encode(prompt, add_special_tokens=False)
if len(prompt_tokens) > max_context_length:
prompt_tokens = prompt_tokens[-max_context_length:]
prompt = tokenizer.decode(prompt_tokens, clean_up_tokenization_spaces=True)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=max_response_length,
min_length=min_response_length,
temperature=0.7, # Slightly higher for more creative responses
top_k=40,
top_p=0.9,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
zephyr_response = response.split("Zephyr:")[-1].strip()
chat_history.append((user_input, zephyr_response))
return "", chat_history, chat_history
with gr.Blocks() as chat_interface:
gr.Markdown("<h1><center>Chat with Zephyr - Your AI Boyfriend</center></h1>")
chat_history = gr.State([])
with gr.Column():
chatbox = gr.Chatbot()
with gr.Row():
user_input = gr.Textbox(show_label=False, placeholder="Talk to Zephyr here...")
submit_button = gr.Button("Send")
submit_button.click(
generate_response,
inputs=[user_input, chat_history],
outputs=[user_input, chatbox, chat_history] # Clear user input and update chatbox and history
)
chat_interface.launch()