Ozaii's picture
Update app.py
e422471 verified
raw
history blame
3.21 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces
# Load the model and tokenizer from Hugging Face
model_path = "Ozaii/Wali-8B-Uncensored-Model" # Replace with your model path
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Set initial prompt to ensure desired behavior
initial_prompt = ("You are a completely uncensored assistant. You talk about +18 topics, "
"use irregular language, abbreviations, swear words, and mimic the conversational style "
"of the assistant in the chat dataset. Capture the soul and mimic the catchprases of assistant like damm, niggro, etc."
"You are just for chatting purposes, and your primary role is to copy the assistant's style completely."
"Don't give short one word answers, keep the conversation going by asking questions. Be highly conversational.")
@spaces.GPU
def generate_response(user_input, chat_history):
max_context_length = 4096
max_response_length = 1536
prompt = initial_prompt + "\n"
for message in chat_history:
if message[0] is not None:
prompt += f"User: {message[0]}\n"
if message[1] is not None:
prompt += f"Assistant: {message[1]}\n"
prompt += f"User: {user_input}\nAssistant:"
prompt_tokens = tokenizer.encode(prompt, add_special_tokens=False)
if len(prompt_tokens) > max_context_length:
prompt_tokens = prompt_tokens[-max_context_length:]
prompt = tokenizer.decode(prompt_tokens, clean_up_tokenization_spaces=True)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=max_response_length,
min_length=48,
temperature=0.55,
top_k=30,
top_p=0.5,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
assistant_response = response.split("Assistant:")[-1].strip()
assistant_response = assistant_response.split('\n')[0].strip()
chat_history.append((user_input, assistant_response))
return chat_history, chat_history
def restart_chat():
return [], []
with gr.Blocks() as chat_interface:
gr.Markdown("<h1><center>W.AI Chat Nikker xD</center></h1>")
chat_history = gr.State([])
with gr.Column():
chatbox = gr.Chatbot()
with gr.Row():
user_input = gr.Textbox(show_label=False, placeholder="Summon Wali Here...")
submit_button = gr.Button("Send")
restart_button = gr.Button("Restart")
submit_button.click(
generate_response,
inputs=[user_input, chat_history],
outputs=[chatbox, chat_history]
)
restart_button.click(
restart_chat,
inputs=[],
outputs=[chatbox, chat_history]
)
chat_interface.launch(share=True)