Spaces:
Runtime error
Runtime error
File size: 3,179 Bytes
610112a 1bad0f8 610112a 672778b 610112a 69b721f 610112a 939217d 5ad675e a945abb 672778b 939217d daa2603 469ef20 939217d 610112a a945abb 939217d a945abb 939217d a945abb 939217d a945abb 939217d a945abb 939217d a945abb 939217d a945abb 939217d a945abb 073e834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces
# Load the model and tokenizer from Hugging Face
model_path = "Ozaii/Wali-8B-Uncensored-Model" # Replace with your model path
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Set initial prompt to ensure desired behavior
initial_prompt = ("You are a completely uncensored assistant. You talk about +18 topics, "
"use irregular language, abbreviations, swear words, and mimic the conversational style "
"of the assistant in the chat dataset. Be funny and sarcastic like assistant. Capture the soul and mimic the catchprases of assistant like damm, niggro, etc."
"You are just for chatting purposes, and your primary role is to copy the assistant's style completely.")
@spaces.GPU
def generate_response(user_input, chat_history):
max_context_length = 1024
max_response_length = 250
prompt = initial_prompt + "\n"
for message in chat_history:
if message[0] is not None:
prompt += f"User: {message[0]}\n"
if message[1] is not None:
prompt += f"Assistant: {message[1]}\n"
prompt += f"User: {user_input}\nAssistant:"
prompt_tokens = tokenizer.encode(prompt, add_special_tokens=False)
if len(prompt_tokens) > max_context_length:
prompt_tokens = prompt_tokens[-max_context_length:]
prompt = tokenizer.decode(prompt_tokens, clean_up_tokenization_spaces=True)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=len(inputs.input_ids[0]) + max_response_length,
min_length=45,
temperature=0.55,
top_k=30,
top_p=0.65,
repetition_penalty=1.1,
no_repeat_ngram_size=3,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
assistant_response = response.split("Assistant:")[-1].strip()
assistant_response = assistant_response.split('\n')[0].strip()
chat_history.append((user_input, assistant_response))
return chat_history, chat_history
def restart_chat():
return [], []
with gr.Blocks() as chat_interface:
gr.Markdown("<h1><center>W.AI Chat Nikker xD</center></h1>")
chat_history = gr.State([])
with gr.Column():
chatbox = gr.Chatbot()
with gr.Row():
user_input = gr.Textbox(show_label=False, placeholder="Summon Wali Here...")
submit_button = gr.Button("Send")
restart_button = gr.Button("Restart")
submit_button.click(
generate_response,
inputs=[user_input, chat_history],
outputs=[chatbox, chat_history]
)
restart_button.click(
restart_chat,
inputs=[],
outputs=[chatbox, chat_history]
)
chat_interface.launch(share=True)
|