# from typing import Any, Coroutine import openai import os from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.chat_models import AzureChatOpenAI from langchain.document_loaders import DirectoryLoader from langchain.chains import RetrievalQA from langchain.vectorstores import Pinecone from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.agents import Tool from langchain.tools import BaseTool from langchain.tools import DuckDuckGoSearchRun from langchain.utilities import WikipediaAPIWrapper from langchain.python import PythonREPL from langchain.chains import LLMMathChain import pinecone from pinecone.core.client.configuration import Configuration as OpenApiConfiguration import gradio as gr import time class DB_Search(BaseTool): name = "Vector Database Search" description = "This is the internal database to search information firstly. If information is found, it is trustful." def _run(self, query: str) -> str: response, source = QAQuery_p(query) # response = "test db_search feedback" return response def _arun(self, query: str): raise NotImplementedError("N/A") Wikipedia = WikipediaAPIWrapper() Netsearch = DuckDuckGoSearchRun() Python_REPL = PythonREPL() wikipedia_tool = Tool( name = "Wikipedia Search", func = Wikipedia.run, description = "Useful to search a topic, country or person when there is no availble information in vector database" ) duckduckgo_tool = Tool( name = "Duckduckgo Internet Search", func = Netsearch.run, description = "Useful to search information in internet when it is not available in other tools" ) python_tool = Tool( name = "Python REPL", func = Python_REPL.run, description = "Useful when you need python to answer questions. You should input python code." ) # tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool] os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE") os.environ["OPENAI_API_VERSION"] = "2023-05-15" username = os.getenv("username") password = os.getenv("password") SysLock = os.getenv("SysLock") # 0=unlock 1=lock chat = AzureChatOpenAI( deployment_name="Chattester", temperature=0, ) llm = chat llm_math = LLMMathChain(llm = llm) math_tool = Tool( name ='Calculator', func = llm_math.run, description ='Useful for when you need to answer questions about math.' ) tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool] embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15) pinecone.init( api_key = os.getenv("pinecone_api_key"), environment='asia-southeast1-gcp-free', # openapi_config=openapi_config ) index_name = 'stla-baby' index = pinecone.Index(index_name) # index.delete(delete_all=True, namespace='') # print(pinecone.whoami()) # print(index.describe_index_stats()) agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose = True, handle_parsing_errors = True) global vectordb vectordb = Chroma(persist_directory='db', embedding_function=embeddings) global vectordb_p vectordb_p = Pinecone.from_existing_index(index_name, embeddings) # loader = DirectoryLoader('./documents', glob='**/*.txt') # documents = loader.load() # text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200) # split_docs = text_splitter.split_documents(documents) # print(split_docs) # vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db') # question = "what is LCDV ?" # rr = vectordb.similarity_search(query=question, k=4) # vectordb.similarity_search(question) # print(type(rr)) # print(rr) def chathmi(message, history): # response = "I don't know" # print(message) response, source = QAQuery_p(message) time.sleep(0.3) print(history) yield response # yield history def chathmi2(message, history): try: output = agent.run(message) time.sleep(0.3) print("History: ", history) response = output yield response except Exception as e: print("error:", e) # yield history # chatbot = gr.Chatbot().style(color_map =("blue", "pink")) # chatbot = gr.Chatbot(color_map =("blue", "pink")) demo = gr.ChatInterface( chathmi2, title="STLA BABY - YOUR FRIENDLY GUIDE ", description= "v0.2: Powered by MECH Core Team", ) # demo = gr.Interface( # chathmi, # ["text", "state"], # [chatbot, "state"], # allow_flagging="never", # ) def CreatDb_P(): global vectordb_p index_name = 'stla-baby' loader = DirectoryLoader('./documents', glob='**/*.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200) split_docs = text_splitter.split_documents(documents) print(split_docs) pinecone.Index(index_name).delete(delete_all=True, namespace='') vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby") print("Pinecone Updated Done") print(index.describe_index_stats()) def QAQuery_p(question: str): global vectordb_p # vectordb = Chroma(persist_directory='db', embedding_function=embeddings) retriever = vectordb_p.as_retriever() retriever.search_kwargs['k'] = int(os.getenv("search_kwargs_k")) # retriever.search_kwargs['fetch_k'] = 100 qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True, verbose = True) # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True) # res = qa.run(question) res = qa({"query": question}) print("-" * 20) print("Question:", question) # print("Answer:", res) print("Answer:", res['result']) print("-" * 20) print("Source:", res['source_documents']) response = res['result'] # response = res['source_documents'] source = res['source_documents'] return response, source def CreatDb(): global vectordb loader = DirectoryLoader('./documents', glob='**/*.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200) split_docs = text_splitter.split_documents(documents) print(split_docs) vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db') vectordb.persist() def QAQuery(question: str): global vectordb # vectordb = Chroma(persist_directory='db', embedding_function=embeddings) retriever = vectordb.as_retriever() retriever.search_kwargs['k'] = 3 # retriever.search_kwargs['fetch_k'] = 100 qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True) # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True) # res = qa.run(question) res = qa({"query": question}) print("-" * 20) print("Question:", question) # print("Answer:", res) print("Answer:", res['result']) print("-" * 20) print("Source:", res['source_documents']) response = res['result'] return response # Used to complete content def completeText(Text): deployment_id="Chattester" prompt = Text completion = openai.Completion.create(deployment_id=deployment_id, prompt=prompt, temperature=0) print(f"{prompt}{completion['choices'][0]['text']}.") # Used to chat def chatText(Text): deployment_id="Chattester" conversation = [{"role": "system", "content": "You are a helpful assistant."}] user_input = Text conversation.append({"role": "user", "content": user_input}) response = openai.ChatCompletion.create(messages=conversation, deployment_id="Chattester") print("\n" + response["choices"][0]["message"]["content"] + "\n") if __name__ == '__main__': # chatText("what is AI?") # CreatDb() # QAQuery("what is COFOR ?") # CreatDb_P() # QAQuery_p("what is GST ?") if SysLock == "1": demo.queue().launch(auth=(username, password)) else: demo.queue().launch() pass