STLA-BABY / app.py
OuroborosM's picture
add early_stopping_method
459baae
raw
history blame
10.8 kB
# from typing import Any, Coroutine
import openai
import os
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain
import pinecone
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time
class DB_Search(BaseTool):
name = "Vector Database Search"
description = "This is the internal database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()
wikipedia_tool = Tool(
name = "Wikipedia Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool = Tool(
name = "Duckduckgo Internet Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool = Tool(
name = "Python REPL",
func = Python_REPL.run,
description = "Useful when you need python to answer questions. You should input python code."
)
# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE")
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.getenv("username")
password = os.getenv("password")
SysLock = os.getenv("SysLock") # 0=unlock 1=lock
chat = AzureChatOpenAI(
deployment_name="Chattester",
temperature=0,
)
llm = chat
llm_math = LLMMathChain.from_llm(llm)
math_tool = Tool(
name ='Calculator',
func = llm_math.run,
description ='Useful for when you need to answer questions about math.'
)
tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool]
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
pinecone.init(
api_key = os.getenv("pinecone_api_key"),
environment='asia-southeast1-gcp-free',
# openapi_config=openapi_config
)
index_name = 'stla-baby'
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
# print(pinecone.whoami())
# print(index.describe_index_stats())
PREFIX = """Answer the following questions as best you can. You must always check internal vector database first and try to answer the question based on the information in internal vector database only.
Only when there is no information available from vector database, you can search information by using another tools.
You have access to the following tools:
Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools
Python REPL: Useful when you need python to answer questions. You should input python code.
Calculator: Useful for when you need to answer questions about math."""
FORMAT_INSTRUCTIONS = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
SUFFIX = """Begin!
Question: {input}
Thought:{agent_scratchpad}"""
agent = initialize_agent(tools, llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
agent_kwargs={
'prefix': PREFIX,
'format_instructions': FORMAT_INSTRUCTIONS,
'suffix': SUFFIX
}
)
print(agent.agent.llm_chain.prompt.template)
global vectordb
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history):
# response = "I don't know"
# print(message)
response, source = QAQuery_p(message)
time.sleep(0.3)
print(history)
yield response
# yield history
def chathmi2(message, history):
try:
output = agent.run(message)
time.sleep(0.3)
print("History: ", history)
response = output
yield response
except Exception as e:
print("error:", e)
# yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))
demo = gr.ChatInterface(
chathmi2,
title="STLA BABY - YOUR FRIENDLY GUIDE ",
description= "v0.2: Powered by MECH Core Team",
)
# demo = gr.Interface(
# chathmi,
# ["text", "state"],
# [chatbot, "state"],
# allow_flagging="never",
# )
def CreatDb_P():
global vectordb_p
index_name = 'stla-baby'
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
pinecone.Index(index_name).delete(delete_all=True, namespace='')
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
def QAQuery_p(question: str):
global vectordb_p
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb_p.as_retriever()
retriever.search_kwargs['k'] = int(os.getenv("search_kwargs_k"))
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
# response = res['source_documents']
source = res['source_documents']
return response, source
def CreatDb():
global vectordb
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
vectordb.persist()
def QAQuery(question: str):
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever()
retriever.search_kwargs['k'] = 3
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
return response
# Used to complete content
def completeText(Text):
deployment_id="Chattester"
prompt = Text
completion = openai.Completion.create(deployment_id=deployment_id,
prompt=prompt, temperature=0)
print(f"{prompt}{completion['choices'][0]['text']}.")
# Used to chat
def chatText(Text):
deployment_id="Chattester"
conversation = [{"role": "system", "content": "You are a helpful assistant."}]
user_input = Text
conversation.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(messages=conversation,
deployment_id="Chattester")
print("\n" + response["choices"][0]["message"]["content"] + "\n")
if __name__ == '__main__':
# chatText("what is AI?")
# CreatDb()
# QAQuery("what is COFOR ?")
# CreatDb_P()
# QAQuery_p("what is GST ?")
if SysLock == "1":
demo.queue().launch(auth=(username, password))
else:
demo.queue().launch()
pass