File size: 6,193 Bytes
e5e6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c3db3
a949598
08c3db3
a949598
e5e6ba2
 
 
 
 
 
 
 
 
 
08c3db3
e5e6ba2
 
a949598
e5e6ba2
718fa4c
e5e6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import openai
import os
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA  
from langchain.vectorstores import Pinecone
import pinecone      
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time

os.environ["OPENAI_API_TYPE"] = "azure"
# os.environ["OPENAI_API_KEY"] = "f930f70cf65f48a8a750a22c813ba1b3"
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
# os.environ["OPENAI_API_BASE"] = "https://stla-baby.openai.azure.com/"
os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE")
os.environ["OPENAI_API_VERSION"] = "2023-05-15"


chat = AzureChatOpenAI(
    deployment_name="Chattester",
    temperature=0,
)

embeddings = OpenAIEmbeddings(deployment="model_embedding")

# pinecone_api_key='0def3ea0-93cd-4ead-b0c6-2ab44b3ede21'

pinecone.init(      
	api_key = os.getenv("pinecone_api_key"),      
	environment='asia-southeast1-gcp-free',
    # openapi_config=openapi_config      
)
index_name = 'stla-baby'     
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
# print(pinecone.whoami())
# print(index.describe_index_stats())



global vectordb
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)

# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')



# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history):
    response = "I don't know"
    print(message)
    response = QAQuery_p(message)
    time.sleep(0.3)
    print(history)
    return response

# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))

demo = gr.ChatInterface(
    chathmi,
    title="STLA BABY - YOUR FRIENDLY GUIDE",
    )

# demo = gr.Interface(
#     chathmi,
#     ["text", "state"],
#     [chatbot, "state"],
#     allow_flagging="never",
# )

def CreatDb_P():
    global vectordb_p
    index_name = 'stla-baby'
    loader = DirectoryLoader('./documents', glob='**/*.txt')
    documents = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
    split_docs = text_splitter.split_documents(documents)
    print(split_docs)
    pinecone.Index(index_name).delete(delete_all=True, namespace='')
    vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
    print("Pinecone Updated Done")
    print(index.describe_index_stats())

def QAQuery_p(question: str):
    global vectordb_p
    # vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
    retriever = vectordb_p.as_retriever()
    retriever.search_kwargs['k'] = 3
    # retriever.search_kwargs['fetch_k'] = 100

    qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
    # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
    # res = qa.run(question)
    res = qa({"query": question})
    
    print("-" * 20)
    print("Question:", question)
    # print("Answer:", res)
    print("Answer:", res['result'])
    print("-" * 20)
    print("Source:", res['source_documents'])
    response = res['result']
    # response = res['source_documents']
    return response

def CreatDb():
    global vectordb
    loader = DirectoryLoader('./documents', glob='**/*.txt')
    documents = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
    split_docs = text_splitter.split_documents(documents)
    print(split_docs)
    vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
    vectordb.persist()

def QAQuery(question: str):
    global vectordb
    # vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
    retriever = vectordb.as_retriever()
    retriever.search_kwargs['k'] = 3
    # retriever.search_kwargs['fetch_k'] = 100

    qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
    # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
    # res = qa.run(question)
    res = qa({"query": question})
    
    print("-" * 20)
    print("Question:", question)
    # print("Answer:", res)
    print("Answer:", res['result'])
    print("-" * 20)
    print("Source:", res['source_documents'])


# Used to complete content
def completeText(Text): 
    deployment_id="Chattester"
    prompt = Text
    completion = openai.Completion.create(deployment_id=deployment_id,
                                        prompt=prompt, temperature=0)                              
    print(f"{prompt}{completion['choices'][0]['text']}.")

# Used to chat
def chatText(Text): 
    deployment_id="Chattester"
    conversation = [{"role": "system", "content": "You are a helpful assistant."}]
    user_input = Text
    conversation.append({"role": "user", "content": user_input})
    response = openai.ChatCompletion.create(messages=conversation,
        deployment_id="Chattester")
    print("\n" + response["choices"][0]["message"]["content"] + "\n")

if __name__ == '__main__':
    # chatText("what is AI?")
    # CreatDb()
    # QAQuery("what is COFOR ?")
    # CreatDb_P()
    # QAQuery_p("what is GST ?")
    demo.queue().launch()
    pass