import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
Mistral 8B Instruct
'''
LICENSE = """
---
"""
PLACEHOLDER = """
Mistral-8B
Ask me anything...
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mistralai/Ministral-8B-Instruct-2410")
model = AutoModelForCausalLM.from_pretrained("mistralai/Ministral-8B-Instruct-2410", device_map="auto")
# Ensure we have a pad token
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_mistral(message: str,
history: list,
temperature: float,
top_p: float,
max_new_tokens: int,
system_prompt: str) -> str:
"""
Generate a streaming response using the Mistral-8B model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
top_p (float): The top-p (nucleus) sampling parameter.
max_new_tokens (int): The maximum number of new tokens to generate.
system_prompt (str): The system prompt to guide the assistant's behavior.
Returns:
str: The generated response.
"""
conversation = []
# Format system prompt correctly using [INST]
if system_prompt:
formatted_prompt = f"[INST] {system_prompt} [/INST]\n\n"
else:
formatted_prompt = ""
# Modify first user message to include system prompt
if history:
first_user_msg = f"{formatted_prompt}{history[0][0]}" if formatted_prompt else history[0][0]
conversation.append({"role": "user", "content": first_user_msg})
conversation.append({"role": "assistant", "content": history[0][1]})
for user, assistant in history[1:]:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
else:
# First message in a new conversation
first_message = f"{formatted_prompt}{message}" if formatted_prompt else message
conversation.append({"role": "user", "content": first_message})
# Tokenize with padding and attention mask
input_data = tokenizer.apply_chat_template(conversation, return_tensors="pt", padding=True, truncation=True)
input_ids = input_data.to(model.device)
attention_mask = input_ids.ne(tokenizer.pad_token_id).to(dtype=torch.long, device=model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
attention_mask=attention_mask, # Fixes the warning
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.pad_token_id, # Explicitly set
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
system_prompt_input = gr.Textbox(
label="System Prompt",
placeholder="Enter system instructions for the model...",
lines=2
)
gr.ChatInterface(
fn=chat_mistral,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
system_prompt_input,
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False),
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Top-p", render=False),
gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False),
],
examples=[
['How to setup a human base on Mars? Give short answer.'],
['Explain theory of relativity to me like I’m 8 years old.'],
['What is 9,000 * 9,000?'],
['Write a pun-filled happy birthday message to my friend Alex.'],
['Justify why a penguin might make a good king of the jungle.']
],
cache_examples=False
)
if __name__ == "__main__":
demo.launch()