import gradio as gr import os import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread import torch # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) DESCRIPTION = '''

Mistral 8B Instruct

''' LICENSE = """

--- """ PLACEHOLDER = """

Mistral-8B

Ask me anything...

""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("mistralai/Ministral-8B-Instruct-2410") model = AutoModelForCausalLM.from_pretrained("mistralai/Ministral-8B-Instruct-2410", device_map="auto") # Ensure we have a pad token if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU(duration=120) def chat_mistral(message: str, history: list, temperature: float, top_p: float, max_new_tokens: int, system_prompt: str) -> str: """ Generate a streaming response using the Mistral-8B model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. top_p (float): The top-p (nucleus) sampling parameter. max_new_tokens (int): The maximum number of new tokens to generate. system_prompt (str): The system prompt to guide the assistant's behavior. Returns: str: The generated response. """ conversation = [] # Format system prompt correctly using [INST] if system_prompt: formatted_prompt = f"[INST] {system_prompt} [/INST]\n\n" else: formatted_prompt = "" # Modify first user message to include system prompt if history: first_user_msg = f"{formatted_prompt}{history[0][0]}" if formatted_prompt else history[0][0] conversation.append({"role": "user", "content": first_user_msg}) conversation.append({"role": "assistant", "content": history[0][1]}) for user, assistant in history[1:]: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) else: # First message in a new conversation first_message = f"{formatted_prompt}{message}" if formatted_prompt else message conversation.append({"role": "user", "content": first_message}) # Tokenize with padding and attention mask input_data = tokenizer.apply_chat_template(conversation, return_tensors="pt", padding=True, truncation=True) input_ids = input_data.to(model.device) attention_mask = input_ids.ne(tokenizer.pad_token_id).to(dtype=torch.long, device=model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, attention_mask=attention_mask, # Fixes the warning streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.pad_token_id, # Explicitly set eos_token_id=terminators, ) if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio block chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) system_prompt_input = gr.Textbox( label="System Prompt", placeholder="Enter system instructions for the model...", lines=2 ) gr.ChatInterface( fn=chat_mistral, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ system_prompt_input, gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False), gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Top-p", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False), ], examples=[ ['How to setup a human base on Mars? Give short answer.'], ['Explain theory of relativity to me like I’m 8 years old.'], ['What is 9,000 * 9,000?'], ['Write a pun-filled happy birthday message to my friend Alex.'], ['Justify why a penguin might make a good king of the jungle.'] ], cache_examples=False ) if __name__ == "__main__": demo.launch()