Spaces:
Sleeping
Sleeping
Add application file
Browse files- app.py +77 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast
|
7 |
+
import torch
|
8 |
+
import re
|
9 |
+
|
10 |
+
# 모델 로딩
|
11 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained("gogamza/kobart-summarization")
|
12 |
+
model = BartForConditionalGeneration.from_pretrained("gogamza/kobart-summarization")
|
13 |
+
|
14 |
+
# 요약 함수
|
15 |
+
def summarize_news(url, min_len, max_len):
|
16 |
+
try:
|
17 |
+
res = requests.get(url)
|
18 |
+
soup = BeautifulSoup(res.text, "html.parser")
|
19 |
+
|
20 |
+
article = soup.find("article")
|
21 |
+
if article:
|
22 |
+
text = article.get_text()
|
23 |
+
else:
|
24 |
+
body = soup.find("div", id="articleBody") or soup.find("div", class_="news_body")
|
25 |
+
if body:
|
26 |
+
text = body.get_text()
|
27 |
+
else:
|
28 |
+
paragraphs = [p.get_text() for p in soup.find_all("p")]
|
29 |
+
paragraphs = [p.strip() for p in paragraphs if len(p.strip()) > 40]
|
30 |
+
text = " ".join(paragraphs)
|
31 |
+
if len(text) < 30:
|
32 |
+
text = soup.get_text()
|
33 |
+
|
34 |
+
text = re.sub(r'[\r\n\t]+', ' ', text)
|
35 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
36 |
+
|
37 |
+
if len(text) < 30:
|
38 |
+
return "본문이 너무 짧거나 추출에 실패했습니다. 다른 뉴스 URL을 시도해보세요."
|
39 |
+
|
40 |
+
input_ids = tokenizer.encode(text, return_tensors="pt", max_length=1024, truncation=True)
|
41 |
+
summary_ids = model.generate(
|
42 |
+
input_ids,
|
43 |
+
max_length=int(max_len),
|
44 |
+
min_length=int(min_len),
|
45 |
+
num_beams=4,
|
46 |
+
early_stopping=True,
|
47 |
+
length_penalty=1.2,
|
48 |
+
no_repeat_ngram_size=3,
|
49 |
+
repetition_penalty=1.5
|
50 |
+
)
|
51 |
+
|
52 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
53 |
+
return summary
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
return f"오류 발생: {e}"
|
57 |
+
|
58 |
+
# Gradio UI
|
59 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
60 |
+
gr.Markdown("## 📰 뉴스 요약기 (KoBART 기반)")
|
61 |
+
gr.Markdown("뉴스 기사 URL을 입력하면 AI가 요약해줍니다.")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
url_input = gr.Textbox(label="뉴스 URL", placeholder="https://news.naver.com/article/...", lines=1)
|
65 |
+
submit_btn = gr.Button("요약하기")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
min_len = gr.Slider(20, 200, value=50, step=10, label="최소 길이")
|
69 |
+
max_len = gr.Slider(50, 400, value=150, step=10, label="최대 길이")
|
70 |
+
|
71 |
+
output = gr.Textbox(label="요약 결과", lines=10)
|
72 |
+
|
73 |
+
submit_btn.click(fn=summarize_news, inputs=[url_input, min_len, max_len], outputs=output)
|
74 |
+
|
75 |
+
# ✅ Hugging Face Spaces에서는 이렇게 실행
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
gradio
|
3 |
+
torch
|
4 |
+
requests
|
5 |
+
beautifulsoup4
|