insight-finder / app.py
ALLOUNE
add visual prior art
be240c1
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Dict, List
import gradio as gr
import pandas as pd
import json
import re
from src.core import *
from src.ressources.main_css import *
app = FastAPI(
title="Insight Finder",
description="Find relevant technologies from a problem",
)
class InputProblem(BaseModel):
problem: str
class InputConstraints(BaseModel):
constraints: Dict[str, str]
# This schema defines the structure for a single technology object
class Technology(BaseModel):
"""Represents a single technology entry with its details."""
title: str
purpose: str
key_components: str
advantages: str
limitations: str
id: int
class OutputPriorArt(BaseModel):
"""Represents the search of prior art using the technology combinations"""
content: str
uris: List
class InputPriorArtConstraints(BaseModel):
technologies: List[Technology]
constraints: Dict[str, str]
class InputPriorArtProblem(BaseModel):
technologies: List[Technology]
problem: str
# This schema defines the root structure of the JSON
class TechnologyData(BaseModel):
"""Represents the top-level object containing a list of technologies."""
technologies: List[Technology]
@app.post("/process", response_model=TechnologyData)
async def process(data: InputProblem):
result= process_input(data, global_tech, global_tech_embeddings, "problem")
return {"technologies": result}
@app.post("/process-constraints", response_model=TechnologyData)
async def process_constraints(constraints: InputConstraints):
result= process_input(constraints.constraints, global_tech, global_tech_embeddings, "constraints")
return {"technologies": result}
@app.post("/prior-art-constraints", response_model=OutputPriorArt)
async def prior_art_constraints(data: InputPriorArtConstraints):
prior_art = process_prior_art(data.technologies, data.constraints, "constraints", "pydantic")
print(prior_art)
return prior_art
@app.post("/prior-art-problems", response_model=OutputPriorArt)
async def prior_art_problems(data: InputPriorArtProblem):
prior_art = process_prior_art(data.technologies, data.problems, "problem", "pydantic")
return prior_art
def make_json_serializable(data):
if isinstance(data, dict):
return {k: make_json_serializable(v) for k, v in data.items()}
elif isinstance(data, list):
return [make_json_serializable(item) for item in data]
elif isinstance(data, tuple):
return tuple(make_json_serializable(item) for item in data)
elif hasattr(data, 'item'):
return float(data.item())
else:
return data
def format_constraints_html(constraints: dict) -> str:
html_content = "<div class='constraints-container'>"
for title, description in constraints.items():
html_content += f"""
<div class='constraint-item'>
<p><span class='constraint-title'>{title}:</span> <span class='constraint-description'>{description}</span></p>
</div>
"""
html_content += "</div>"
return "<h1>Retrieved Constraints</h1>" + html_content
def format_best_combinations_html(combinations_data: list) -> str:
html_content = "<div class='combinations-outer-container'>"
for i, combination in enumerate(combinations_data):
problem_title = combination.get("problem", {}).get("title", f"Problem {i+1}")
technologies = combination.get("technologies", [])
html_content += f"""
<div class='problem-card'>
<h3 class='problem-card-title'>{problem_title}</h3>
<div class='technologies-inner-container'>
"""
for tech_info_score in technologies:
tech_info = tech_info_score[0]
if isinstance(tech_info, dict):
html_content += f"""
<div class='technology-card'>
<h4 class='tech-card-title'>{tech_info.get('title', 'N/A')}</h4>
<p><strong>Purpose:</strong> {tech_info.get('purpose', 'N/A')}</p>
<p><strong>Components:</strong> {tech_info.get('key_components', 'N/A')}</p>
<p><strong>Advantages:</strong> {tech_info.get('advantages', 'N/A')}</p>
<p><strong>Limitations:</strong> {tech_info.get('limitations', 'N/A')}</p>
</div>
"""
html_content += """
</div>
</div>
"""
html_content += "</div>"
return "<h1>The 5 Best Technology Combinations per constraint</h1>" + html_content
def format_final_technologies_html(technologies_list: list) -> str:
html_content = "<div class='final-tech-container'>"
for tech_info in technologies_list:
if isinstance(tech_info, dict):
html_content += f"""
<div class='final-tech-card'>
<h4 class='final-tech-title'>{tech_info.get('title', 'N/A')}</h4>
<p><strong>Purpose:</strong> {tech_info.get('purpose', 'N/A')}</p>
<p><strong>Components:</strong> {tech_info.get('key_components', 'N/A')}</p>
<p><strong>Advantages:</strong> {tech_info.get('advantages', 'N/A')}</p>
<p><strong>Limitations:</strong> {tech_info.get('limitations', 'N/A')}</p>
</div>
"""
html_content += "</div>"
return "<h1>The best technologies combinations </h1>" + html_content
def format_prior_art_html(prior_art_data: dict) -> str:
if not prior_art_data or 'content' not in prior_art_data:
return "<div class='prior-art-container'><p>No prior art data available.</p></div>"
content = prior_art_data['content']
uris = prior_art_data.get('uris', [])
# 1. Convert **text** to <strong>text</strong>
processed_content = re.sub(r'\*\*(.*?)\*\*', r'<strong>\1</strong>', content)
# 2. Convert [x](uri) to clickable links
# This regex handles cases where [x] is followed by (uri)
# It captures the number (group 1) and the URI (group 2)
processed_content = re.sub(r'\[(\d+)\]\((https?:\/\/[^\s\)]+)\)', r'<a href="\2" target="_blank" class="prior-art-inline-link">\1</a>', processed_content)
# Split content into initial summary and then document sections
sections = processed_content.split("Here are the documents found and the technologies used within them:\n\n")
summary_html = ""
documents_html = ""
# Process summary part (the first part of the split)
if len(sections) > 0:
summary_lines = sections[0].strip().split('\n')
summary_html += " <div class='prior-art-summary'>\n"
for line in summary_lines:
if line.strip().startswith('*'):
# For bullet points, specially format bold text
# The bolding for **text** is already handled by re.sub
parts = line.split(':', 1)
if len(parts) > 1:
summary_html += f" <p class='summary-bullet'><strong>{parts[0].replace('*', '').strip()}:</strong> {parts[1].strip()}</p>\n"
else:
summary_html += f" <p class='summary-bullet'>{line.replace('*', '').strip()}</p>\n"
elif line.strip():
summary_html += f" <p>{line.strip()}</p>\n"
summary_html += " </div>\n"
# Process documents part (the second part of the split)
if len(sections) > 1:
documents_raw = sections[1].strip()
# Split by "number. **" to get individual document entries reliably
document_entries = re.split(r'(\d+\.\s*\*\*.*?\*\*)', documents_raw)
parsed_docs = []
for i in range(1, len(document_entries), 2):
title_line = document_entries[i].strip()
content_block = document_entries[i+1].strip() if i+1 < len(document_entries) else ""
parsed_docs.append({'title_line': title_line, 'content_block': content_block})
documents_html += " <div class='prior-art-documents'>\n"
for doc in parsed_docs:
doc_number_title = doc['title_line']
doc_content_lines = [l.strip() for l in doc['content_block'].split('\n') if l.strip()]
doc_description = ""
tech_used_section = []
desc_start_idx = -1
tech_start_idx = -1
for idx, line in enumerate(doc_content_lines):
if line.startswith("Description:"):
desc_start_idx = idx
elif line.startswith("Technologies Used:"):
tech_start_idx = idx
if desc_start_idx != -1:
desc_end_idx = tech_start_idx if tech_start_idx != -1 else len(doc_content_lines)
doc_description = " ".join(doc_content_lines[desc_start_idx:desc_end_idx]).replace("Description:", "").strip()
if tech_start_idx != -1:
tech_used_section = [l.replace('*', '').strip() for l in doc_content_lines[tech_start_idx:] if l.strip().startswith('*')]
documents_html += f"""\
<div class='prior-art-document-card'>
<h4 class='document-title'>{doc_number_title}</h4>
<p class='document-description'><strong>Description:</strong> {doc_description}</p>\n"""
if tech_used_section:
documents_html += " <div class='document-technologies'>\n"
documents_html += " <h5>Technologies Used:</h5>\n <ul>\n"
for tech_item in tech_used_section:
if tech_item.strip():
tech_parts = tech_item.split(':', 1)
if len(tech_parts) > 1:
documents_html += f" <li><strong>{tech_parts[0].strip()}:</strong> {tech_parts[1].strip()}</li>\n"
else:
documents_html += f" <li>{tech_item.strip()}</li>\n"
documents_html += " </ul>\n </div>\n"
documents_html += " </div>\n"
documents_html += " </div>\n"
# Grouped URLs at the end
grouped_uris_html = ""
if uris:
grouped_uris_html += " <div class='grouped-uris-section'>\n"
grouped_uris_html += " <hr class='disruptive-line'>\n" # Disruptive line
grouped_uris_html += " <h3>Referenced Documents (URIs):</h3>\n"
grouped_uris_html += " <ul>\n"
for idx, uri in enumerate(uris):
grouped_uris_html += f" <li>{idx + 1}. <a href='{uri}' target='_blank' class='prior-art-grouped-link'>Document {idx + 1} Link</a></li>\n"
grouped_uris_html += " </ul>\n </div>\n"
return f"<div class='prior-art-container'>\n{summary_html}{documents_html}{grouped_uris_html}</div>"
def gradio_prior_art(best_technologies, constraints):
prior_art = process_prior_art(best_technologies, constraints, "constraints", "dict")
html_prior_art = format_prior_art_html(prior_art)
print(html_prior_art)
return html_prior_art
def process_input_gradio(problem_description: str):
"""
Processes the input problem description step-by-step for Gradio.
Returns all intermediate results.
"""
# Step 1: Set Prompt
prompt = set_prompt(problem_description)
# Step 2: Retrieve Constraints
constraints = retrieve_constraints(prompt)
# Step 3: Stem Constraints
constraints_stemmed = stem(constraints, "constraints")
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx")
print(constraints_stemmed)
# Step 4: Global Tech (already loaded, just acknowledge)
# save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading
# Step 5: Get Contrastive Similarities
result_similarities, matrix = get_contrastive_similarities(
constraints_stemmed, global_tech, global_tech_embeddings
)
save_to_pickle(result_similarities)
# Step 6: Find Best List Combinations
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix)
# Step 7: Select Technologies
best_technologies_id = select_technologies(best_combinations)
# Step 8: Get Technologies by ID
best_technologies = get_technologies_by_id(best_technologies_id, global_tech)
# Format outputs for Gradio
# For Constraints:
constraints_html = format_constraints_html(constraints)
# For Best Combinations:
best_combinations_html = format_best_combinations_html(best_combinations)
# For Final Technologies:
final_technologies_html = format_final_technologies_html(best_technologies)
return (
prompt,
constraints_html, # Output HTML for constraints
best_combinations_html, # Output HTML for best combinations
", ".join(map(str, best_technologies_id)), # Still a simple text list
final_technologies_html, # Output HTML for final technologies
{"technologies": best_technologies}, # `best_technologies` is the actual list of dicts
constraints
)
# Return a gr.update object to change the value and visibility in one step
# return gr.update(value=html_prior_art, visible=True)
# --- Gradio Interface Setup ---
input_problem = gr.Textbox(
label="Enter Problem Description",
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics."
)
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False)
output_constraints = gr.HTML(label="2. Retrieved Constraints") # Changed to HTML
output_best_combinations = gr.HTML(label="7. Best Technology Combinations Found") # Changed to HTML
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False)
output_final_technologies = gr.HTML(label="9. Final Best Technologies") # Changed to HTML
output_prior_art = gr.HTML(label="10. Prior Art Analysis") # Initially hidden
stock_technologies = gr.JSON(visible=False)
stock_constraints = gr.JSON(visible=False)
with gr.Blocks(
theme=gr.themes.Soft(),
css=custom_css
) as gradio_app_blocks:
gr.Markdown("# Insight Finder: Step-by-Step Technology Selection")
gr.Markdown("## Enter a problem description to see how relevant technologies are identified through various processing steps.")
with gr.Row():
with gr.Column(scale=2):
input_problem.render()
with gr.Column(scale=1):
gr.Markdown("Click to start the analysis:"),
process_button = gr.Button("Process Problem", elem_id="process_button")
gr.Markdown("---")
gr.Markdown("### Processing Steps & Results:")
with gr.Row():
with gr.Column():
output_prompt.render()
output_constraints.render()
with gr.Column():
output_selected_ids.render()
output_best_combinations.render()
output_final_technologies.render()
gr.Markdown("---")
gr.Markdown("### Prior Art Analysis")
prior_art_button = gr.Button("Find Prior Art", elem_id="prior_art_button")
output_prior_art.render()
stock_technologies.render()
stock_constraints.render()
process_button.click(
fn=process_input_gradio,
inputs=input_problem,
outputs=[
output_prompt,
output_constraints,
output_best_combinations,
output_selected_ids,
output_final_technologies,
stock_technologies,
stock_constraints
]
)
prior_art_button.click(
fn=gradio_prior_art,
inputs=[stock_technologies, stock_constraints],
outputs=output_prior_art
)
gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio")
#if __name__ == "__main__":
# gradio_app_blocks.launch()