|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from typing import Dict, List |
|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
from src.core import * |
|
|
|
app = FastAPI( |
|
title="Insight Finder", |
|
description="Find relevant technologies from a problem", |
|
) |
|
|
|
class InputData(BaseModel): |
|
problem: str |
|
|
|
class InputConstraints(BaseModel): |
|
constraints: Dict[str, str] |
|
|
|
|
|
class Technology(BaseModel): |
|
"""Represents a single technology entry with its details.""" |
|
title: str |
|
purpose: str |
|
key_components: str |
|
advantages: str |
|
limitations: str |
|
id: int |
|
|
|
|
|
class TechnologyData(BaseModel): |
|
"""Represents the top-level object containing a list of technologies.""" |
|
technologies: List[Technology] |
|
|
|
@app.post("/process", response_model=TechnologyData) |
|
async def process(data: InputData): |
|
result = process_input(data, global_tech, global_tech_embeddings) |
|
return {"technologies": result} |
|
|
|
|
|
@app.post("/process-constraints", response_model=TechnologyData) |
|
async def process_constraints(constraints: InputConstraints): |
|
result = process_input_from_constraints(constraints.constraints, global_tech, global_tech_embeddings) |
|
return {"technologies": result} |
|
|
|
|
|
def make_json_serializable(data): |
|
""" |
|
Recursively convert tensors to floats in a data structure |
|
so it can be passed to json.dumps. |
|
""" |
|
if isinstance(data, dict): |
|
return {k: make_json_serializable(v) for k, v in data.items()} |
|
elif isinstance(data, list): |
|
return [make_json_serializable(item) for item in data] |
|
elif isinstance(data, tuple): |
|
return tuple(make_json_serializable(item) for item in data) |
|
elif hasattr(data, 'item'): |
|
return float(data.item()) |
|
else: |
|
return data |
|
|
|
def process_input_gradio(problem_description: str): |
|
""" |
|
Processes the input problem description step-by-step for Gradio. |
|
Returns all intermediate results. |
|
""" |
|
|
|
prompt = set_prompt(problem_description) |
|
|
|
|
|
constraints = retrieve_constraints(prompt) |
|
|
|
|
|
constraints_stemmed = stem(constraints, "constraints") |
|
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") |
|
|
|
|
|
|
|
|
|
|
|
result_similarities, matrix = get_contrastive_similarities( |
|
constraints_stemmed, global_tech, global_tech_embeddings |
|
) |
|
save_to_pickle(result_similarities) |
|
|
|
|
|
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) |
|
|
|
|
|
best_technologies_id = select_technologies(best_combinations) |
|
|
|
|
|
best_technologies = get_technologies_by_id(best_technologies_id, global_tech) |
|
|
|
|
|
matrix_display = matrix |
|
|
|
print(best_combinations) |
|
|
|
result_similarities_display = { |
|
item['id2']: f"{item['constraint']['title']} ({item['similarity'].item():.3f})" |
|
for item in result_similarities |
|
} |
|
|
|
|
|
|
|
safe_best_combinations = make_json_serializable(best_combinations) |
|
safe_best_technologies = make_json_serializable(best_technologies) |
|
|
|
|
|
best_combinations_display = json.dumps(safe_best_combinations, indent=2) |
|
best_technologies_display = json.dumps(safe_best_technologies, indent=2) |
|
|
|
print(f"constraints_stemmed : {constraints_stemmed}") |
|
|
|
return ( |
|
prompt, |
|
", ".join(constraints), |
|
", ".join(constraints_stemmed), |
|
"Global technologies loaded and ready.", |
|
str(result_similarities_display), |
|
pd.DataFrame(matrix_display, index=constraints_stemmed, columns=global_tech['name']), |
|
best_combinations_display, |
|
", ".join(map(str, best_technologies_id)), |
|
best_technologies_display |
|
) |
|
|
|
|
|
|
|
|
|
input_problem = gr.Textbox( |
|
label="Enter Problem Description", |
|
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." |
|
) |
|
|
|
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) |
|
output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False) |
|
output_stemmed_constraints = gr.Textbox(label="3. Stemmed Constraints", interactive=False) |
|
output_tech_loaded = gr.Textbox(label="4. Global Technologies Status", interactive=False) |
|
output_similarities = gr.Textbox(label="5. Result Similarities (Constraint -> Top Technologies)", interactive=False) |
|
output_matrix = gr.Dataframe(label="6. Similarity Matrix (Constraints vs. Technologies)", interactive=False) |
|
output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found") |
|
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) |
|
output_final_technologies = gr.JSON(label="9. Final Best Technologies") |
|
|
|
|
|
with gr.Blocks() as gradio_app_blocks: |
|
gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") |
|
gr.Markdown("Enter a problem description to see how relevant technologies are identified through various processing steps.") |
|
input_problem.render() |
|
process_button = gr.Button("Process Problem") |
|
|
|
with gr.Column(): |
|
output_prompt.render() |
|
output_constraints.render() |
|
output_stemmed_constraints.render() |
|
output_tech_loaded.render() |
|
output_similarities.render() |
|
output_matrix.render() |
|
output_best_combinations.render() |
|
output_selected_ids.render() |
|
output_final_technologies.render() |
|
|
|
process_button.click( |
|
fn=process_input_gradio, |
|
inputs=input_problem, |
|
outputs=[ |
|
output_prompt, |
|
output_constraints, |
|
output_stemmed_constraints, |
|
output_tech_loaded, |
|
output_similarities, |
|
output_matrix, |
|
output_best_combinations, |
|
output_selected_ids, |
|
output_final_technologies |
|
] |
|
) |
|
|
|
gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio") |