File size: 3,998 Bytes
330e067 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
import uvicorn
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Union
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Definition of Pydantic data models
class ProblematicItem(BaseModel):
text: str
class ProblematicList(BaseModel):
problematics: List[str]
class PredictionResponse(BaseModel):
predicted_class: str
score: float
class PredictionsResponse(BaseModel):
results: List[Dict[str, Union[str, float]]]
# Model environment variables
MODEL_NAME = os.getenv("MODEL_NAME", "votre-compte/votre-modele")
LABEL_0 = os.getenv("LABEL_0", "Classe A")
LABEL_1 = os.getenv("LABEL_1", "Classe B")
# Loading the model and tokenizer
tokenizer = None
model = None
def load_model():
global tokenizer, model
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
return True
except Exception as e:
print(f"Error loading model: {e}")
return False
def health_check():
global model, tokenizer
if model is None or tokenizer is None:
success = load_model()
if not success:
raise HTTPException(status_code=503, detail="Model not available")
return {"status": "ok", "model": MODEL_NAME}
def predict_single(item: ProblematicItem):
global model, tokenizer
if model is None or tokenizer is None:
success = load_model()
if not success:
print('Error loading the model.')
try:
# Tokenization
inputs = tokenizer(item.text, padding=True, truncation=True, return_tensors="pt")
# Prediction
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=1).item()
confidence_score = probabilities[0][predicted_class].item()
# Associate the correct label
predicted_label = LABEL_0 if predicted_class == 0 else LABEL_1
return PredictionResponse(predicted_class=predicted_label, score=confidence_score)
except Exception as e:
print(f"Error during prediction: {str(e)}")
def predict_batch(items: ProblematicList):
global model, tokenizer
if model is None or tokenizer is None:
success = load_model()
if not success:
print("Model not available")
try:
results = []
# Batch processing
batch_size = 8
for i in range(0, len(items.problematics), batch_size):
batch_texts = items.problematics[i:i+batch_size]
# Tokenization
inputs = tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt")
# Prediction
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_classes = torch.argmax(probabilities, dim=1).tolist()
confidence_scores = [probabilities[j][predicted_classes[j]].item() for j in range(len(predicted_classes))]
# Converting numerical predictions into labels
for j, (pred_class, score) in enumerate(zip(predicted_classes, confidence_scores)):
predicted_label = LABEL_0 if pred_class == 0 else LABEL_1
results.append({
"text": batch_texts[j],
"class": predicted_label,
"score": score
})
return PredictionsResponse(results=results)
except Exception as e:
print(f"Error during prediction: {str(e)}") |