File size: 4,058 Bytes
45f7e41 58d1f23 f423824 58d1f23 45f7e41 6948ec2 45f7e41 f7bea85 45f7e41 21968dc 45f7e41 58d1f23 f423824 06303ec 58d1f23 68b86b8 45f7e41 21968dc 45f7e41 21968dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
from pydantic import BaseModel
from typing import List, Dict, Union
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Definition of Pydantic data models
class ProblematicItem(BaseModel):
text: str
class ProblematicList(BaseModel):
problematics: List[str]
class PredictionResponse(BaseModel):
predicted_class: str
score: float
class PredictionsResponse(BaseModel):
results: List[Dict[str, Union[str, float]]]
class BatchPredictionScoreItem(BaseModel):
problematic: str
score: float
# Model environment variables
MODEL_NAME = os.getenv("MODEL_NAME")
LABEL_0 = os.getenv("LABEL_0")
LABEL_1 = os.getenv("LABEL_1")
if not MODEL_NAME:
raise ValueError("Environment variable MODEL_NAME is not set.")
# Loading the model and tokenizer
tokenizer = None
model = None
def load_model():
global tokenizer, model
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
return True
except Exception as e:
print(f"Error loading model: {e}")
return False
def health_check():
global model, tokenizer
if model is None or tokenizer is None:
success = load_model()
if not success:
print("Model not available")
return {"status": "ok", "model": MODEL_NAME}
def predict_single(item: ProblematicItem):
global model, tokenizer
if model is None or tokenizer is None:
success = load_model()
if not success:
print('Error loading the model.')
try:
# Tokenization
inputs = tokenizer(item.text, padding=True, truncation=True, return_tensors="pt")
# Prediction
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=1).item()
confidence_score = probabilities[0][predicted_class].item()
# Associate the correct label
predicted_label = LABEL_0 if predicted_class == 0 else LABEL_1
return PredictionResponse(predicted_class=predicted_label, score=confidence_score)
except Exception as e:
print(f"Error during prediction: {str(e)}")
def predict_batch(items: ProblematicList):
global model, tokenizer
if model is None or tokenizer is None:
success = load_model()
if not success:
print("Model not available")
try:
results = []
if not items.problematics:
return []
# Batch processing
batch_size = 8
for i in range(0, len(items.problematics), batch_size):
batch_texts = items.problematics[i:i+batch_size]
# Tokenization
inputs = tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt")
# Prediction
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# predicted_classes = torch.argmax(probabilities, dim=1).tolist()
# confidence_scores = [probabilities[j][predicted_classes[j]].item() for j in range(len(predicted_classes))]
for j in range(len(batch_texts)):
score_specific_class = probabilities[j][1].item()
results.append(
BatchPredictionScoreItem(
problematic=batch_texts[j],
score=score_specific_class
)
)
return results
except AttributeError as ae:
print(f"AttributeError during prediction in predict_batch (likely wrong input type): {str(ae)}")
return []
except Exception as e:
print(f"Generic error during prediction in predict_batch: {str(e)}")
return [] |