Spaces:
Sleeping
Sleeping
File size: 13,395 Bytes
9f149f3 ec64056 9f149f3 ec64056 7aa5e73 ec64056 9f149f3 ec64056 9f149f3 ec64056 9f149f3 ec64056 9f149f3 ec64056 9f149f3 ec64056 9f149f3 7aa5e73 9f149f3 2cdd1ea 9f149f3 7aa5e73 9f149f3 7aa5e73 9f149f3 2cdd1ea 9f149f3 2cdd1ea 9f149f3 2cdd1ea 9f149f3 2cdd1ea 9f149f3 2cdd1ea 9f149f3 2cdd1ea 7aa5e73 2cdd1ea 9f149f3 2cdd1ea 9f149f3 2cdd1ea 9f149f3 2cdd1ea 7aa5e73 9f149f3 2cdd1ea 9f149f3 2cdd1ea 9f149f3 2cdd1ea ec64056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import time
from datetime import datetime
import os, warnings, nltk, json, re
import numpy as np
from nltk.stem import WordNetLemmatizer
from dotenv import load_dotenv
from sklearn.preprocessing import MinMaxScaler
os.environ['CURL_CA_BUNDLE'] = ""
warnings.filterwarnings('ignore')
nltk.download('wordnet')
load_dotenv()
from datasets import load_dataset
import bm25s
from bm25s.hf import BM25HF
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from schemas import *
from bs4 import BeautifulSoup
import requests
lemmatizer = WordNetLemmatizer()
spec_metadatas = load_dataset("OrganizedProgrammers/ETSISpecMetadata", token=os.environ["HF_TOKEN"])
spec_contents = load_dataset("OrganizedProgrammers/ETSISpecContent", token=os.environ["HF_TOKEN"])
bm25_index = BM25HF.load_from_hub("OrganizedProgrammers/ETSIBM25IndexSingle", load_corpus=True, token=os.environ["HF_TOKEN"])
spec_metadatas = spec_metadatas["train"].to_list()
spec_contents = spec_contents["train"].to_list()
def get_document(spec_id: str, spec_title: Optional[str]):
text = [f"{spec_id} - {spec_title}" if spec_title else f"{spec_id}"]
for section in spec_contents:
if spec_id == section["doc_id"]:
text.extend([section['section'], section['content']])
return text
app = FastAPI(title="3GPP Document Finder Back-End", description="Backend for 3GPPDocFinder - Searching technical documents & specifications from 3GPP FTP server")
app.mount("/static", StaticFiles(directory="static"), name="static")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class DocFinder:
def __init__(self):
self.main_ftp_url = "https://docbox.etsi.org/SET"
self.session = requests.Session()
req = self.session.post("https://portal.etsi.org/ETSIPages/LoginEOL.ashx", verify=False, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36"}, data=json.dumps({"username": os.environ.get("EOL_USER"), "password": os.environ.get("EOL_PASSWORD")}))
print(req.content, req.status_code)
def get_workgroup(self, doc: str):
main_tsg = "SET-WG-R" if any(doc.startswith(kw) for kw in ["SETREQ", "SCPREQ"]) else "SET-WG-T" if any(doc.startswith(kw) for kw in ["SETTEC", "SCPTEC"]) else "SET" if any(doc.startswith(kw) for kw in ["SET", "SCP"]) else None
if main_tsg is None:
return None, None, None
regex = re.search(r'\(([^)]+)\)', doc)
workgroup = "20" + regex.group(1)
return main_tsg, workgroup, doc
def find_workgroup_url(self, main_tsg, workgroup):
response = self.session.get(f"{self.main_ftp_url}/{main_tsg}/05-CONTRIBUTIONS", verify=False)
soup = BeautifulSoup(response.text, 'html.parser')
for item in soup.find_all("tr"):
link = item.find("a")
if link and workgroup in link.get_text():
return f"{self.main_ftp_url}/{main_tsg}/05-CONTRIBUTIONS/{link.get_text()}"
return f"{self.main_ftp_url}/{main_tsg}/05-CONTRIBUTIONS/{workgroup}"
def get_docs_from_url(self, url):
try:
response = self.session.get(url, verify=False, timeout=15)
soup = BeautifulSoup(response.text, "html.parser")
return [item.get_text() for item in soup.select("tr td a")]
except Exception as e:
print(f"Error accessing {url}: {e}")
return []
def search_document(self, doc_id: str):
original = doc_id
main_tsg, workgroup, doc = self.get_workgroup(doc_id)
urls = []
if main_tsg:
wg_url = self.find_workgroup_url(main_tsg, workgroup)
print(wg_url)
if wg_url:
files = self.get_docs_from_url(wg_url)
print(files)
for f in files:
if doc in f.lower() or original in f:
print(f)
doc_url = f"{wg_url}/{f}"
urls.append(doc_url)
return urls[0] if len(urls) == 1 else urls[-2] if len(urls) > 1 else f"Document {doc_id} not found"
class SpecFinder:
def __init__(self):
self.main_url = "https://www.etsi.org/deliver/etsi_ts"
self.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36"}
def get_spec_path(self, doc_id: str):
if "-" in doc_id:
position, part = doc_id.split("-")
else:
position, part = doc_id, None
position = position.replace(" ", "")
if part:
if len(part) == 1:
part = "0" + part
spec_folder = position + part if part is not None else position
return f"{int(position) - (int(position)%100)}_{int(position) - (int(position)%100) + 99}/{spec_folder}"
def get_docs_from_url(self, url):
try:
response = requests.get(url, verify=False, timeout=15)
soup = BeautifulSoup(response.text, "html.parser")
docs = [item.get_text() for item in soup.find_all("a")][1:]
return docs
except Exception as e:
print(f"Error accessing {url}: {e}")
return []
def search_document(self, doc_id: str):
# Example : 103 666[-2 opt]
original = doc_id
url = f"{self.main_url}/{self.get_spec_path(original)}/"
print(url)
releases = self.get_docs_from_url(url)
files = self.get_docs_from_url(url + releases[-1])
for f in files:
if f.endswith(".pdf"):
return url + releases[-1] + "/" + f
return f"Specification {doc_id} not found"
@app.get("/")
async def main_menu():
return FileResponse(os.path.join("templates", "index.html"))
finder_doc = DocFinder()
finder_spec = SpecFinder()
@app.post("/find")
def find_document(request: DocRequest):
start_time = time.time()
finder = finder_spec if request.doc_id[0].isnumeric() else finder_doc
print(finder)
result = finder.search_document(request.doc_id)
if "not found" not in result and "Could not" not in result and "Unable" not in result:
return DocResponse(
doc_id=request.doc_id,
url=result,
search_time=time.time() - start_time
) if not isinstance(result, list) else result
else:
raise HTTPException(status_code=404, detail=result)
@app.post("/batch", response_model=BatchDocResponse)
def find_documents_batch(request: BatchDocRequest):
start_time = time.time()
results = {}
missing = []
for doc_id in request.doc_ids:
finder = finder_doc if doc_id[0].isalpha() else finder_spec
result = finder.search_document(doc_id)
if "not found" not in result and "Could not" not in result and "Unable" not in result:
results[doc_id] = result
else:
missing.append(doc_id)
return BatchDocResponse(
results=results,
missing=missing,
search_time=time.time() - start_time
)
@app.post("/search-spec", response_model=KeywordResponse)
def search_specification_by_keywords(request: KeywordRequest):
start_time = time.time()
boolSensitiveCase = request.case_sensitive
search_mode = request.search_mode
spec_type = request.spec_type
keywords = [string.lower() if boolSensitiveCase else string for string in request.keywords.split(",")]
print(keywords)
unique_specs = set()
results = []
if keywords == [""] and search_mode == "deep":
raise HTTPException(status_code=400, detail="You must enter keywords in deep search mode !")
for spec in spec_metadatas:
valid = False
if spec['id'] in unique_specs: continue
if spec.get('type', None) is None or (spec_type is not None and spec["type"] != spec_type): continue
if search_mode == "deep":
contents = []
doc = get_document(spec["id"], spec["title"])
docValid = len(doc) > 1
if request.mode == "and":
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}"
if all(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
valid = True
if search_mode == "deep":
if docValid:
for x in range(1, len(doc) - 1, 2):
section_title = doc[x]
section_content = doc[x+1]
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
if all(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
valid = True
contents.append({section_title: section_content})
elif request.mode == "or":
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}"
if any(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
valid = True
if search_mode == "deep":
if docValid:
for x in range(1, len(doc) - 1, 2):
section_title = doc[x]
section_content = doc[x+1]
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
if any(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
valid = True
contents.append({section_title: section_content})
if valid:
spec_content = spec
if search_mode == "deep":
spec_content["contains"] = {k: v for d in contents for k, v in d.items()}
results.append(spec_content)
else:
unique_specs.add(spec['id'])
if len(results) > 0:
return KeywordResponse(
results=results,
search_time=time.time() - start_time
)
else:
raise HTTPException(status_code=404, detail="Specifications not found")
@app.post("/search-spec/experimental", response_model=KeywordResponse)
def bm25_search_specification(request: BM25KeywordRequest):
start_time = time.time()
spec_type = request.spec_type
threshold = request.threshold
query = request.keywords
results_out = []
query_tokens = bm25s.tokenize(query)
results, scores = bm25_index.retrieve(query_tokens, k=len(bm25_index.corpus))
print("BM25 raw scores:", scores)
def calculate_boosted_score(metadata, score, query):
title = set(metadata['title'].lower().split())
q = set(query.lower().split())
spec_id_presence = 0.5 if metadata['id'].lower() in q else 0
booster = len(q & title) * 0.5
return score + spec_id_presence + booster
spec_scores = {}
spec_indices = {}
spec_details = {}
for i in range(results.shape[1]):
doc = results[0, i]
score = scores[0, i]
spec = doc["metadata"]["id"]
boosted_score = calculate_boosted_score(doc['metadata'], score, query)
if spec not in spec_scores or boosted_score > spec_scores[spec]:
spec_scores[spec] = boosted_score
spec_indices[spec] = i
spec_details[spec] = {
'original_score': score,
'boosted_score': boosted_score,
'doc': doc
}
def normalize_scores(scores_dict):
if not scores_dict:
return {}
scores_array = np.array(list(scores_dict.values())).reshape(-1, 1)
scaler = MinMaxScaler()
normalized_scores = scaler.fit_transform(scores_array).flatten()
normalized_dict = {}
for i, spec in enumerate(scores_dict.keys()):
normalized_dict[spec] = normalized_scores[i]
return normalized_dict
normalized_scores = normalize_scores(spec_scores)
for spec in spec_details:
spec_details[spec]["normalized_score"] = normalized_scores[spec]
unique_specs = sorted(normalized_scores.keys(), key=lambda x: normalized_scores[x], reverse=True)
for rank, spec in enumerate(unique_specs, 1):
details = spec_details[spec]
metadata = details['doc']['metadata']
if metadata.get('type', None) is None or (spec_type is not None and metadata["type"] != spec_type):
continue
if details['normalized_score'] < threshold / 100:
break
results_out.append(metadata)
if len(results_out) > 0:
return KeywordResponse(
results=results_out,
search_time=time.time() - start_time
)
else:
raise HTTPException(status_code=404, detail="Specifications not found") |